• CA
  • JST
  • FSTA
  • SCOPUS
  • 北大核心期刊
  • 中國科技核心期刊CSTPCD
  • 中國精品科技期刊
  • RCCSE中國核心學術期刊
  • 中國農業核心期刊
  • 中國生物醫學文獻服務系統SinoMed收錄期刊
中國精品科技期刊2020

聚球藻PCC7002藻藍蛋白提取純化及熱致褪色機理研究

朱林清 曾名湧

朱林清,曾名湧. 聚球藻PCC7002藻藍蛋白提取純化及熱致褪色機理研究[J]. 食品工業科技,2022,43(16):32?40. doi:  10.13386/j.issn1002-0306.2021110096
引用本文: 朱林清,曾名湧. 聚球藻PCC7002藻藍蛋白提取純化及熱致褪色機理研究[J]. 食品工業科技,2022,43(16):32?40. doi:  10.13386/j.issn1002-0306.2021110096
ZHU Linqing, ZENG Mingyong. Extraction and Purification and Heat-induced Fading Mechanism of Synechococcus sp. PCC7002 Phycocyanin[J]. Science and Technology of Food Industry, 2022, 43(16): 32?40. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2021110096
Citation: ZHU Linqing, ZENG Mingyong. Extraction and Purification and Heat-induced Fading Mechanism of Synechococcus sp. PCC7002 Phycocyanin[J]. Science and Technology of Food Industry, 2022, 43(16): 32?40. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2021110096

聚球藻PCC7002藻藍蛋白提取純化及熱致褪色機理研究

doi: 10.13386/j.issn1002-0306.2021110096
基金項目: 海南省重點研發計劃(ZDYF2021XDNY283)。
詳細信息
    作者簡介:

    朱林清(1997?),男,碩士研究生,研究方向:水產品高值化利用,E-mail:zlq21190731131@163.com

    通訊作者:

    曾名湧(1965?),男,博士,教授,研究方向:水產品高值化利用,E-mail:mingyz@ouc.edu.cn

  • 中圖分類號: TS254.1

Extraction and Purification and Heat-induced Fading Mechanism of Synechococcus sp. PCC7002 Phycocyanin

  • 摘要: 本文旨在研究聚球藻PCC7002(Synechococcus sp. PCC7002,簡稱“聚球藻”)藻藍蛋白(Phycocyanin,PC)的提取純化及熱致褪色機理,通過高壓均質、殼聚糖絮凝和硫酸銨鹽析提取純化藻藍蛋白,并采用色澤指標、UV-Vis光譜、熒光發射光譜、粒徑電位、FTIR光譜、SDS-PAGE電泳研究其在熱處理(50、60、70、80、90 ℃,30 min)過程中褪色的機理。結果表明:藻藍蛋白的最適提取條件是將藻粉溶于0.04 mol/L的NaCl溶液中使其濃度達到2 mg/mL并在80 MPa下均質7 min,此時藻藍蛋白得率為10.5081% ± 0.0936%;經0.15 mg/mL殼聚糖絮凝、50%飽和硫酸銨鹽析后,藻藍蛋白純度可由0.6950 ± 0.0043提高至1.9084 ± 0.2621。進一步研究藻藍蛋白的熱致褪色機理發現:從60 ℃開始,脫輔基蛋白空間結構的破壞使蛋白骨架維持的藻藍膽素天然構象發生轉變、藻藍蛋白紫外吸收和特征熒光大幅下降,藻藍蛋白的藍色色澤因此大幅消褪;粒徑結果表明,藻藍蛋白在60 ℃時開始聚集,而80 ℃下形成的更大聚集體可能將四吡咯發色團包埋于其內,使得藻藍蛋白色澤消褪程度加深;此外,FTIR光譜和SDS-PAGE表明熱處理過程中藻藍蛋白β亞基的破壞程度可能遠高于α亞基,且被破壞的結構主要是α-螺旋。綜上,維持藻藍蛋白脫輔基蛋白結構或者發色團依托蛋白結構的穩定,是藻藍蛋白熱處理過程中呈色穩定的關鍵。本研究結果為藻藍蛋白在熱處理過程中護色措施的研究提供了一定的理論依據。
  • 圖  1  提取介質對藻藍蛋白得率和純度的影響

    Figure  1.  Effects of extraction medium on the yield and purity of phycocyanin

    注:不同小寫字母表示差異顯著,P<0.05;圖2~圖9、圖11、表1同。

    圖  2  介質濃度對藻藍蛋白得率和純度的影響

    Figure  2.  Effects of medium concentration on the yield and purity of phycocyanin

    圖  3  藻體濃度對藻藍蛋白得率和純度的影響

    Figure  3.  Effects of algal concentration on the yield and purity of phycocyanin

    圖  4  均質壓力對藻藍蛋白得率和純度的影響

    Figure  4.  Effects of homogeneous pressure on the yield and purity of phycocyanin

    圖  5  均質時間對藻藍蛋白得率和純度的影響

    Figure  5.  Effects of homogenization time on the yield and purity of phycocyanin

    圖  6  殼聚糖濃度對藻藍蛋白純度和回收率的影響

    Figure  6.  Effects of chitosan concentration on the purity and recovery of phycocyanin

    圖  7  硫酸銨飽和度對藻藍蛋白純度和回收率的影響

    Figure  7.  Effects of ammonium sulfate saturation on the purity and recovery of phycocyanin

    圖  8  不同處理溫度對藻藍蛋白溶液L*,a*,b*值的影響

    Figure  8.  Influence of different heating temperature on L*, a*, b *value of phycocyanin solution

    圖  9  不同處理溫度對藻藍蛋白色素保留率的影響

    Figure  9.  Influence of different treatment temperatures on the retention rate of phycocyanin pigment

    圖  10  不同處理溫度對藻藍蛋白紫外可見光光譜的影響

    Figure  10.  Influence of different treatment temperatures on the ultraviolet visible light spectra of phycocyanin

    圖  11  不同處理溫度對藻藍蛋白溶液Avis/Auv值的影響

    Figure  11.  Influence of different heating temperature on Avis/Auv value of phycocyanin solution

    圖  12  不同處理溫度對藻藍蛋白內源性熒光發射光譜的影響

    Figure  12.  Influence of different treatment temperatures on the endogenous fluorescence emission spectra of phycocyanin

    圖  13  不同處理溫度對藻藍蛋白特征性熒光發射光譜的影響

    Figure  13.  Influence of different treatment temperatures on the characteristic fluorescence emission spectra of phycocyanin

    圖  14  不同處理溫度對藻藍蛋白紅外光譜的影響

    Figure  14.  Influence of different treatment temperatures on the infrared spectra of phycocyanin

    圖  15  不同處理溫度對藻藍蛋白亞基分子量的影響

    Figure  15.  Influence of different treatment temperatures on the molecular weight of phycocyanin subunits

    表  1  不同處理溫度對藻藍蛋白粒徑及電位的影響

    Table  1.   Influence of different treatment temperatures on particle size and potential of phycocyanin

    Ctr50 ℃60 ℃70 ℃80 ℃90 ℃
    Zeta(mV)?9.15±1.4a?14±0.862c?11.1±1.25bc?10.9±0.346bc?11.4±0.608b?10.9±1.43bc
    Size(nm)??497.7±10.06c525.4±10.92c811.1±12.59b1190±79.04a
    下載: 導出CSV
    人妻AV无码系列一区二区三区
  • [1] 康瑞娟, 施定基, 蔡昭鈴, 等. 外源基因對聚球藻7002光合作用的影響[C]//青島: 中國藻類學會第十一次學術討論會, 2001: 133.

    KANG R J, SHI D J, CAI Z L, et al. Effects of exogenous genes on photosynthesis of Synechococcus sp. PCC 7002[C]// Qingdao: The eleventh academic Symposium of the Chinese algal society, 2001: 133.
    [2] 鄭靈剛. 基于廣鹽聚球藻Synechococcus sp. PCC7002的啟動子比較篩選以及產乙醇載體的構建[D]. 廈門: 廈門大學, 2019.

    ZHENG L G. Comparative selection of promoters and construction of ethanol-producing vectors in the euryhaline cyanobacterium Synechococcus sp. PCC 7002[D]. Xiamen: Xiamen University, 2019.
    [3] 高風正. 聚球藻7002嗜鐵素的發酵與制備工藝研究[D]. 青島: 中國海洋大學, 2015.

    GAO F Z. Study on the fermentation and preparation of siderophores from Synechococcus sp. PCC 7002[D]. Qingdao: Ocean University of China, 2015.
    [4] 馮廣鑫, 吳浩浩, 曾名湧. 海洋微藻源多聚磷酸鹽納米微粒對炎癥性腸病的改善作用及相關機理研究[C]// 北京: 中國食品科學技術學會第十五屆年會論文摘要集, 2018: 216−217.

    FENG G X, WU H H, ZENG M Y. Research on the improvement effect of marine microalgae-derived polyphosphate nanoparticles on inflammatory bowel disease and related mechanisms[C]// Beijing: Summary of papers of the 15th Annual Meeting of the Chinese Society for Food Science and Technology, 2018: 216−217.
    [5] WANG R, WANG Y H, GUO W, et al. Stability and bioactivity of carotenoids from Synechococcus sp. PCC 7002 in Zein/NaCas/Gum Arabic composite nanoparticles fabricated by pH adjustment and heat treatment antisolvent precipitation[J]. Food Hydrocolloids,2021,117:106663. doi:  10.1016/j.foodhyd.2021.106663
    [6] GUO W, ZHU S Q, LI S Y, et al. Microalgae polysaccharides ameliorates obesity in association with modulation of lipid metabolism and gut microbiota in high-fat-diet fed C57BL/6 mice[J]. International Journal of Biological Macromolecules,2021,182:1371?1383. doi:  10.1016/j.ijbiomac.2021.05.067
    徐春明, 李婷, 王英英, 等. 食用藍色素及其使用現狀研究進展[J]. 中國食品添加劑,2014(1):208?214. [XU C M, LI T, WANG Y Y, et al. Research progress of edible blue pigments and its application status[J]. China Food Additives,2014(1):208?214. doi:  10.3969/j.issn.1006-2513.2014.01.028

    [7]XU C M, LI T, WANG Y Y, et al. Research progress of edible blue pigments and its application status[J]. China Food Additives, 2014(1): 208-214. doi:  10.3969/j.issn.1006-2513.2014.01.028
    郝帥, 秦玉, 王成濤. 功能食品藻藍蛋白的生理活性研究進展[J]. 食品與生物技術學報,2017,36(12):1233?1240. [HAO S, QIN Y, WANG C T. Research progress of the physiological activity of functional food phycocyanin[J]. Journal of Food Science and Biotechnology,2017,36(12):1233?1240. doi:  10.3969/j.issn.1673-1689.2017.12.001

    [8]HAO S, QIN Y, WANG C T. Research progress of the physiological activity of functional food phycocyanin[J]. Journal of Food Science and Biotechnology, 2017, 36(12): 1233-1240. doi:  10.3969/j.issn.1673-1689.2017.12.001
    [9] LI Y, ZHANG Z, ABBASPOURRAD A. Improved thermal stability of phycocyanin under acidic conditions by forming soluble complexes with polysaccharides[J]. Food Hydrocolloids,2021,119:106852. doi:  10.1016/j.foodhyd.2021.106852
    [10] JESPERSEN L, STROMDAHL L D, OLSEN K, et al. Heat and light stability of three natural blue colorants for use in confectionery and beverages[J]. European Food Research and Technology,2005,220(3?4):261?266. doi:  10.1007/s00217-004-1062-7
    [11] SU C H, LIU C S, YANG P C, et al. Solid-liquid extraction of phycocyanin from Spirulina platensis: Kinetic modeling of influential factors[J]. Separation and Purification Technology,2014,123:64?68. doi:  10.1016/j.seppur.2013.12.026
    郭偉, 高風正, 馮一農, 等. 聚球藻PCC7002營養特性分析[J]. 食品工業科技,2019,40(15):248?253. [GUO W, GAO F Z, FENG Y N, et al. Analysis of nutritional properties of Synechococcus sp. PCC 7002[J]. Science and Technology of Food Industry,2019,40(15):248?253.

    [12]GUO W, GAO F Z, FENG Y N, et al. Analysis of nutritional properties of Synechococcus sp. PCC 7002[J]. Science and Technology of Food Industry, 2019, 40(15): 248-253.
    劉立闖, 胡志和, 劉彤, 等. 螺旋藻蛋白提取方法比較研究[J]. 食品科學,2008,29(11):228?233. [LIU L C, HU Z H, LIU T, et al. Comparative study on extraction methods of Spirulina phycobiliprotein[J]. Food Science,2008,29(11):228?233. doi:  10.3321/j.issn:1002-6630.2008.11.050

    [13]LIU L C, HU Z H, LIU T, et al. Comparative study on extraction methods of spirulina phycobiliprotein[J]. Food Science, 2008, 29(11): 228-233. doi:  10.3321/j.issn:1002-6630.2008.11.050
    [14] 廖曉霞, 張學武. 高效分離純化藻藍蛋白新法[J]. 食品工業科技,2011,32(6):273?275,280. [LIAO X X, ZHANG X W. New method for efficient separation and purification of C-phycocyanin[J]. Science and Technology of Food Industry,2011,32(6):273?275,280.

    LIAO X X, ZHANG X W. New method for efficient separation and purification of C-phycocyanin[J]. Science and Technology of Food Industry, 2011, 32(6): 273-275, 280.
    于淑坤, 岳思君, 李敏, 等. 鈍頂螺旋藻藻藍蛋白分離純化[J]. 食品科技,2019,44(5):248?252. [YU S K, YUE S J, LI M, et al. Isolation and purification of C-phycocyanin from Spirulina platensis[J]. Food Science and Technology,2019,44(5):248?252.

    [15]YU S K, YUE S J, LI M, et al. Isolation and purification of C-phycocyanin from Spirulina platensis[J]. Food Science and Technology, 2019, 44(5): 248-252.
    [16] ZHANG S, ZHANG Z, DADMOHAMMADI Y, et al. Whey protein improves the stability of C-phycocyanin in acidified conditions during light storage[J]. Food Chemistry,2021,334:128642.
    [17] HERRERA A, BOUSSIBA S, NAPOLEONE V, et al. Recovery of C-phycocyanin from the cyanobacterium Spirulina maxima[J]. Journal of Applied Phycology,1989,1:325?331. doi:  10.1007/BF00003469
    [18] SONI B, KALAVADIA B, TRIVEDI U, et al. Extraction, purification and characterization of phycocyanin from Oscillatoria quadripunctulata—Isolated from the rocky shores of Bet-Dwarka, Gujarat, India[J]. Process Biochemistry,2006,41(9):2017?2023. doi:  10.1016/j.procbio.2006.04.018
    梁英妹, 陳妙瑩, 陳清梅, 等. 小球藻食品工藝中的關鍵技術[J]. 科技創新導報,2018,15(10):247?250. [LIANG Y M, CHEN M Y, CHEN Q M, et al. The key technology in chlorella food technology[J]. Science and Technology Innovation Herald,2018,15(10):247?250.

    [19]LIANG Y M, CHEN M Y, CHEN Q M, et al. The key technology in chlorella food technology[J]. Science and Technology Innovation Herald, 2018, 15(10): 247-250.
    [20] TAVANANDI H A, MITTAL R, CHANDRASEKHAR J, et al. Simple and efficient method for extraction of C-phycocyanin from dry biomass of Arthospira platensis[J]. Algal Research,2018,31:239?251. doi:  10.1016/j.algal.2018.02.008
    [21] 陳裕. 巢湖藍藻藻藍蛋白提取的破壁方法研究[D]. 合肥: 合肥工業大學, 2015.

    CHEN Y. Research of brokening methods of phycocyanin extraction from blue algae in Lake Chaohu[D]. Hefei: Hefei University of Technology, 2015.
    [22] SUKHINOV D V, GORIN K V, ROMANOV A O, et al. Increased C-phycocyanin extract purity by flocculation of Arthrospira platensis with chitosan[J]. Algal Research,2021,58:102393. doi:  10.1016/j.algal.2021.102393
    [23] 莫柳達. 螺旋藻中藻藍蛋白的分離純化、熒光探針研制及其在快速檢測中的應用[D]. 福州: 福州大學, 2018.

    MO L D. Purification of phycocyanin from Spirulina, development of fluorescent probes and its application in rapid detection[D]. Fuzhou: Fuzhou University, 2018.
    [24] KUPKA M, SCHEER H. Unfolding of C-phycocyanin followed by loss of non-covalent chromophore-protein interactions: 1. Equilibrium experiments[J]. Biochimica et Biophysica Acta (BBA)- Bioenergetics,2008,1777(1):94?103. doi:  10.1016/j.bbabio.2007.10.009
    [25] MARTELLI G, FOLLI C, VISAI L, et al. Thermal stability improvement of blue colorant C-phycocyanin from Spirulina platensis for food industry applications[J]. Process Biochemistry,2014,49(1):154?159. doi:  10.1016/j.procbio.2013.10.008
    孫冰玉, 劉琳琳, 石彥國, 等. 大豆親脂蛋白熱誘導解離締合及自組裝納米顆粒表征[J]. 農業機械學報,2021,52(2):346?354. [SUN B Y, LIU L L, SHI Y G, et al. Characterization of dissociation-association behavior and self-assembly nanoparticles of soybean lipophilic protein by heating induction[J]. Transactions of the Chinese Society for Agricultural Machinery,2021,52(2):346?354.

    [26]SUN B Y, LIU L L, SHI Y G, et al. Characterization of dissociation-association behavior and self-assembly nanoparticles of soybean lipophilic protein by heating induction[J]. Transactions of the Chinese Society for Agricultural Machinery[J], 2021, 52(02): 346-354.
    [27] MACCOLL R. Cyanobacterial phycobilisomes[J]. Journal of Structural Biology,1998,124(2-3):311?334. doi:  10.1006/jsbi.1998.4062
    [28] FALKEBORG M F, RODA-SERRAT M C, BURNAES K L, et al. Stabilising phycocyanin by anionic micelles[J]. Food Chemistry,2018,239:771?780. doi:  10.1016/j.foodchem.2017.07.007
    [29] B?CKER L, HOSTETTLER T, DIENER M, et al. Time-temperature-resolved functional and structural changes of phycocyanin extracted from Arthrospira platensis/Spirulina[J]. Food Chemistry,2020,316:126374. doi:  10.1016/j.foodchem.2020.126374
    [30] ROYER C A. Probing protein folding and conformational transitions with fluorescence[J]. Chemical Reviews,2006,106(5):1769?1784. doi:  10.1021/cr0404390
    [31] GHISAIDOOBE A B T, CHUNG S J. Intrinsic tryptophan fluorescence in the detection and analysis of proteins: A focus on f?rster resonance energy transfer techniques[J]. International Journal of Molecular Sciences,2014,15(12):22518?22538. doi:  10.3390/ijms151222518
    梁霄, 王成華, 盧鑫, 等. 鈍頂螺旋藻C-藻藍蛋白的穩定性和熒光特性[J]. 現代食品科技,2020,36(6):89?96. [LIANG X, WANG C H, LU X, et al. Stability and fluorescence characteristics of C-phycocyanin in Spirulina platensis[J]. Modern Food Science and Technology,2020,36(6):89?96.

    [32]LIANG X, WANG C H, LU X, et al. Stability and fluorescence characteristics of C-phycocyanin in Spirulina platensis[J]. Modern Food Science and Technology, 2020, 36(6): 89-96.
    [33] ZHANG Z, CHO S, DADMOHAMMADI Y, et al. Improvement of the storage stability of C-phycocyanin in beverages by high-pressure processing[J]. Food Hydrocolloids,2021,110:106055. doi:  10.1016/j.foodhyd.2020.106055
    [34] ZHANG Z, LI Y, ABBASPOURRAD A. Improvement of the colloidal stability of phycocyanin in acidified conditions using whey protein-phycocyanin interactions[J]. Food Hydrocolloids,2020,105:105747. doi:  10.1016/j.foodhyd.2020.105747
    [35] 鄒蕊矯. 基于藻藍蛋白的薄膜制備及光電特性研究[D]. 成都: 電子科技大學, 2016.

    ZOU R J. Study on preparation and optoelectronic properties of phycocyanin-based thin films[D]. Chengdu: University of Electronic Science and Technology of China, 2016.
    [36] ZHENG J B, GAO Q, TANG C H, et al. Heteroprotein complex formation of soy protein isolate and lactoferrin: Thermodynamic formation mechanism and morphologic structure[J]. Food Hydrocolloids,2020,100:105415. doi:  10.1016/j.foodhyd.2019.105415
    [37] FINKELSTEIN A V, PTITSYN O B. Protein physics[M]. Se ed. Amsterdam: Academic Press, 2016: 39?50.
    李思夢, 高風正, 曾名湧. 聚球藻7002藻藍蛋白的分離純化研究[J]. 食品工業科技,2016,37(23):96?102. [LI S M, GAO F Z, ZENG M Y. Study on extraction and purification of C-phycocyanin in Synechococcus sp. PCC 7002[J]. Science and Technology of Food Industry,2016,37(23):96?102.

    [38]LI S M, GAO F Z, ZENG M Y. Study on extraction and purification of C-phycocyanin in Synechococcus sp. PCC 7002[J]. Science and Technology of Food Industry, 2016, 37(23): 96-102.
    姜國慶, 閆秋麗, 李東, 等. 螺旋藻中藻藍蛋白提取、純化及穩態化研究進展[J]. 食品安全質量檢測學報,2021,12(6):2332?2338. [JIANG G Q, YAN Q L, LI D, et al. Research progress on separation, purification and stabilization of phycocyanin from Spirulina[J]. Journal of Safety & Quality,2021,12(6):2332?2338.

    [39]JIANG G Q, YAN Q L, LI D, et al. Research progress on separation, purification and stabilization of phycocyanin from Spirulina[J]. Journal of Safety & Quality, 2021, 12(6): 2332-2338.
  • 加載中
圖(15) / 表(1)
計量
  • 文章訪問數:  18
  • HTML全文瀏覽量:  9
  • PDF下載量:  4
  • 被引次數: 0
出版歷程
  • 收稿日期:  2021-11-10
  • 網絡出版日期:  2022-08-11
  • 刊出日期:  2022-08-11

目錄

    /

    返回文章
    返回

    重要通知

    專欄綠色通道:食品營養素包埋與遞送