• CA
  • JST
  • FSTA
  • SCOPUS
  • 北大核心期刊
  • 中國科技核心期刊CSTPCD
  • 中國精品科技期刊
  • RCCSE中國核心學術期刊
  • 中國農業核心期刊
  • 中國生物醫學文獻服務系統SinoMed收錄期刊
中國精品科技期刊2020

紅果參果化學成分及其α-葡萄糖苷酶抑制活性研究

黃春躍 馬夢潔 牛莉鑫 靳建杰 吳蔓 田蓓 胡曉

黃春躍,馬夢潔,牛莉鑫,等. 紅果參果化學成分及其α-葡萄糖苷酶抑制活性研究[J]. 食品工業科技,2022,43(16):65?73. doi:  10.13386/j.issn1002-0306.2021110169
引用本文: 黃春躍,馬夢潔,牛莉鑫,等. 紅果參果化學成分及其α-葡萄糖苷酶抑制活性研究[J]. 食品工業科技,2022,43(16):65?73. doi:  10.13386/j.issn1002-0306.2021110169
HUANG Chunyue, MA Mengjie, NIU Lixin, et al. Phytochemical Composition and α-Glucosidase Inhibitory Activity of Campanumoea lancifolia (Roxb.) Merr Fruit[J]. Science and Technology of Food Industry, 2022, 43(16): 65?73. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2021110169
Citation: HUANG Chunyue, MA Mengjie, NIU Lixin, et al. Phytochemical Composition and α-Glucosidase Inhibitory Activity of Campanumoea lancifolia (Roxb.) Merr Fruit[J]. Science and Technology of Food Industry, 2022, 43(16): 65?73. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2021110169

紅果參果化學成分及其α-葡萄糖苷酶抑制活性研究

doi: 10.13386/j.issn1002-0306.2021110169
基金項目: 國家自然科學基金(81803844,81402824);上海市自然科學基金(19ZR1454400,21ZR1461800);中央引導地方科技發展資金(GZIM 202001-9-2)
詳細信息
    作者簡介:

    黃春躍(1977?),女,碩士,副研究員,研究方向:中草藥的活性成分及質量控制研究,E-mail:hcyspring@163.com

    通訊作者:

    胡曉(1983?),男,博士,研究員,研究方向:天然先導化合物發現及中藥藥效物質基礎研究,E-mail:xjtuyhx@126.com

  • 中圖分類號: TS209

Phytochemical Composition and α-Glucosidase Inhibitory Activity of Campanumoea lancifolia (Roxb.) Merr Fruit

  • 摘要: 為了探究紅果參果化學成分及其α-葡萄糖苷酶抑制活性。本實驗以紅果參果為材料,采用溶劑法制備紅果參果乙醇提取物和粗多糖。采用紫外分光光度法測定其總黃酮、總花色苷、總多酚和多糖含量,進一步通過超高效液相色譜-飛行時間-串聯質譜技術分析其化學成分。利用α-葡萄糖苷酶抑制模型考察粗多糖、乙醇提取物及其主要代表成分的體外α-葡萄糖苷酶抑制作用。結果表明,5個批次的紅果參果粗多糖多糖含量為27.59%~37.59%;乙醇提取物的總黃酮含量為1.22%~1.77%,總花色苷為0.90%~1.14%,總多酚含量為13.11%~18.85%。紅果參果乙醇提取物化學成分豐富多樣,從中共鑒定出21個化合物,其中包含10個黃酮、3個有機酸、3個花色苷、3個酚酸、1個氨基酸和1個聚炔類成分。紅果參果乙醇提取物、粗多糖和代表化合物木犀草素的α-葡萄糖苷酶的IC50分別為7.52、37.43和8.03 μg/mL,明顯高于陽性對照阿卡波糖(616.17 μg/mL)。本研究初步明確了紅果參果的物質基礎,并首次報道了紅果參果具有潛在抗糖尿病活性,為紅果參果的開發利用提供理論參考。
  • 圖  1  對照品(A)、紅果參果乙醇提取物負離子模式(B)和正離子模式(C)基峰色譜圖

    Figure  1.  Representative base peak intensity (BPI) chromatograms of reference substances (A)、 HGSG ethanol extract in negative mode (B) and in positive mode (C)

    圖  3  阿卡波糖的α-葡萄糖苷酶活性的抑制作用

    Figure  3.  α-Glucosidase inhibition of acarbose

    圖  2  木犀草素和紅果參果樣品的α-葡萄糖苷酶活性的抑制作用

    Figure  2.  α-Glucosidase inhibition of luteolin and HGSG samples

    表  1  紅果參果乙醇提取物的總黃酮、總花色苷及總多酚含量($\overline{\rm{x}} $±s,n=3)

    Table  1.   Contents of total flavonoids, total anthocyanins and total phenols in ethanol extracts of HGSG ($\overline{\rm{x}} $±s, n=3)

    批號總黃酮(%)總花色苷(%)總多酚(gGAE/100 g)
    1-A-71.32±0.03c0.95±0.06c13.51±0.93b
    2-A-91.32±0.04c0.91±0.06c13.11±0.82b
    3-B-111.64±0.06b1.04±0.01b13.82±0.25b
    4-A-121.77±0.09a1.14±0.01a18.85±1.14a
    5-B-51.22±0.04c0.90±0.04c14.45±0.75b
    注:同列不同小寫字母表示差異顯著(P<0.05)。
    下載: 導出CSV

    表  2  紅果參果乙醇提取物化學成分鑒定結果

    Table  2.   Identification of ethanol extracts from Campanumoea lancifolia (Roxb.) Merr fruits

    序號保留時間
    (min)
    實際值
    (m/z)
    理論值
    (m/z)
    加合離子分子式碎片離子(m/z)最大吸收波長(nm)化合物結構類型
    14.10166.0860166.0868[M+H]+C9H11NO2166.0860,120.0811260苯丙氨酸[37]氨基酸
    25.18279.1089279.1093[M-H]?C11H20O8279.1089,117.0554,71.0136?戊酸葡萄糖苷[38]有機酸
    36.42219.0569219.0505[M-H]?C8H12O7219.0569,201.0414,173.0102,157.0515,111.0093?檸檬酸乙酯[39]有機酸
    47.86367.1608367.1604[M-H]?C15H28O10413.1662,367.1608?戊二酸-1,?5-?二[3-?羥基-?2,?2-?二(羥甲基)?丙基]酯[40]有機酸
    58.97353.0877353.0873[M-H]?C16H18O9353.0877,191.0557,175.0061,161.0238243,325綠原酸[25]酚酸
    69.18609.1473609.1456[M-Cl]?C27H29O16609.1473,300.0277232,276飛燕草素-3-O-蕓香糖苷[25]花色苷
    79.34487.1473487.1452[M-H]?C21H28O13487.1473,443.1553,179.0346,135.0446237,315咖啡酸-4'-O-蕓香糖苷[25]酚酸
    810.07593.1526593.1506[M-Cl]?C27H29O15Cl593.1526,285.0461232,280矢車菊素-3-O-蕓香糖苷[25]花色苷
    914.48609.1458609.1456[M-H]?C27H30O16609.1619,301.0421,257.0489251,3356-羥基木犀草素-7-O-蕓香糖苷[41]黃酮
    1014.65609.1462609.1456[M-H]?C27H30O16609.1462,301.0408255,354蘆丁*黃酮
    1114.85593.1511593.1511[M-H]?C27H30O15593.1511,285.0559265,348木犀草素-7-O-蕓香糖苷[25]黃酮
    1215.28447.0935447.0927[M-H]?C21H20O11447.0935,285.0461253,349木犀草苷*黃酮
    1315.30447.0927447.0927[M-Cl]?C21H19O11Cl447.0927,285.0449292矢車菊素-3-O-葡萄糖苷[25]花色苷
    1416.01381.1191381.1186[M-H]?C18H22O9381.1191,179.0380,161.0273,135.0480245,325綠原酸乙酯[42]酚酸
    1516.50577.1549577.1557[M-H]?C27H29O14577.1549,269.0449267,338芹菜素-7-O-蕓香糖苷[25]黃酮
    1617.07447.0931447.0927[M-H]?C21H20O11447.0931,285.0461267,336木犀草素-4'-O-葡萄糖苷[43]黃酮
    1717.54533.0928533.0931[M-H]?C24H22O14533.0928,489.1037,285.0461251,348木犀草素-7-O-malonylglucoside[44]黃酮
    1817.74441.1770441.1761[M+HCOO]?C20H28O8441.1770,395.1794,215.1091253,267,283黨參炔苷*聚炔
    1920.23285.0447285.0399[M-H]?C15H10O6285.0447253,348木犀草素*黃酮
    2022.30269.0453269.0450[M-H]?C15H10O5269.0453267,329芹菜素*黃酮
    2122.90299.0558299.0556[M-H]?C16H12O6299.0558,284.0363251,267,343甲氧基木犀草素黃酮
    注:“?”無紫外吸收;*通過對照品確認。
    下載: 導出CSV

    表  3  樣品α-糖苷酶抑制活性實驗

    Table  3.   α-Glycosidase inhibitory activity test

    名稱樣品濃度(mg/mL)抑制率(%)結論
    2-A-9乙醇提取物2.00>90強活性
    2-A-9粗多糖2.0080.75±2.98強活性
    木犀草素1.00>90強活性
    矢車菊素-3-O-蕓香糖苷1.0030.06±2.55弱活性
    黨參炔苷1.00/無活性
    下載: 導出CSV
    人妻AV无码系列一区二区三区
  • [1] FAN W. Epidemiology in diabetes mellitus and cardiovascular disease[J]. Cardiovascular Endocrinology,2017,6(1):8?16. doi:  10.1097/XCE.0000000000000116
    [2] SAEEDI P, PETERSOHN I, SALPEA P, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the international diabetes federation diabetes atlas, 9th edition[J]. Diabetes Research and Clinical Practice,2019,157:107843. doi:  10.1016/j.diabres.2019.107843
    [3] WHO. Global Report on Diabetes[EB/OL]. Available online:http://www.who.int/diabetes/global-report/en/(accessed on 15 July 2016).
    [4] 于彩云, 高兆蘭, 陳天資, 等. 天然產物中α-葡萄糖苷酶抑制劑的研究進展[J]. 食品工業科技,2015,36(22):394?399. [YU Caiyun, GAO Zhaolan, CHEN Tianzi, et al. Advancement in research of α-glucosidase inhibitors of natural products[J]. Science and Technology of Food Industry,2015,36(22):394?399.

    YU Caiyun, GAO Zhaolan, CHEN Tianzi, et al. Advancement in research of α-glucosidase inhibitors of natural products[J]. Science and Technology of Food Industry, 2015, 36(22): 394-399.
    [5] 閻成炟, 郭崇真, 林建陽, 等. 新型α-葡萄糖苷酶抑制劑篩選及藥理作用研究進展[J]. 藥物評價研究,2021,44(2):440?445. [YAN Chengda, GUO Chongzhen, LIN Jianyang, et al. Research progress of screen and pharmacological effect for novel α-glucosidase[J]. Drug Evaluation Research,2021,44(2):440?445.

    YAN Chengda, GUO Chongzhen, LIN Jianyang, et al. Research progress of screen and pharmacological effect for novel α-glucosidase[J]. Drug Evaluation Research, 2021, 44(2): 440-445.
    [6] 季濤, 宿樹蘭, 郭盛, 等. 基于α-葡萄糖苷酶抑制活性評價桑葉多組分藥效相互作用研究[J]. 中國中藥雜志,2016(11):1999?2006. [JI Tao, SU Shulan, GUO Sheng, et al. Evaluate drug interaction of multi-components in Morus alba leaves based on α-glucosidase inhibitory activity[J]. China Journal of Chinese Materia Medica,2016(11):1999?2006.

    JI Tao, SU Shulan, GUO Sheng, et al. Evaluate drug interaction of multi-components in morus alba leaves based on α-glucosidase inhibitory activity[J]. China Journal of Chinese Materia Medica, 2016(11): 1999-2006.
    [7] RYU H, LEE B, CURTIS-LONG M, et al. Polyphenols from Broussonetia papyrifera displaying potent α-glucosidase inhibition[J]. Journal of Agricultural and Food Chemistry,2010,58(1):202?208. doi:  10.1021/jf903068k
    [8] 喬錦莉, 張妍, 劉佩, 等. 野生藍果忍冬多酚鑒定及其抗氧化、降血糖活性[J]. 食品科學,2021,42(11):47?55. [QIAO Jinli, ZHANG Yan, LIU Pei, et al. Polyphenol composition and antioxidant and hypoglycemic activities in wild blue honeysuckle fruit[J]. Food Science,2021,42(11):47?55. doi:  10.7506/spkx1002-6630-20200709-123

    QIAO Jinli, ZHANG Yan, LIU Pei, et al. Polyphenol composition and antioxidant and hypoglycemic activities in wild blue honeysuckle fruit[J]. Food Science, 2021, 42(11): 47-55. doi:  10.7506/spkx1002-6630-20200709-123
    [9] AURIANE D, NAWEL B, TRISTAN R, et al. α-Glucosidase inhibitory activity of tannat grape phenolic extracts in relation to their ripening stages[J]. Biomolecules,2020,10(8):1088. doi:  10.3390/biom10081088
    [10] JIANG Z D, YU G, LIANG Y, et al. Inhibitory effects of a sulfated polysaccharide isolated from edible red alga Bangiafusco-purpurea on α-amylase and α-glucosidase[J]. Bioscience, Biotechnology, and Biochemistry,2019,83(11):2065?2074. doi:  10.1080/09168451.2019.1634515
    [11] CAO C L, HUANG Q, ZHANG B, et al. Physicochemical characterization and in vitro hypoglycemic activities of polysaccharides from Sargassum pallidum by microwave-assisted aqueous two-phase extraction[J]. International Journal of Biological Macromolecules,2018,109:357?368. doi:  10.1016/j.ijbiomac.2017.12.096
    [12] CAO X, XIA Y, LIU D, et al. Inhibitory effects of Lentinus edodes mycelia polysaccharide on α- glucosidase, glycation activity and high glucose-induced cell damage[J]. Carbohydrate Polymers,2020,246:116659. doi:  10.1016/j.carbpol.2020.116659
    [13] PROEN?A C, FREITAS M, RIBEIRO D, et al. α-Glucosidase inhibition by flavonoids: An in vitro and in silico structure-activity relationship study[J]. Journal of Enzyme Inhibition and Medicinal Chemistry,2017,32(1):1216?1228. doi:  10.1080/14756366.2017.1368503
    [14] PENG X, ZHANG G, LIAO Y, et al. Inhibitory kinetics and mechanism of kaempferol on α-glucosidase[J]. Food Chemistry,2016,190:207?215. doi:  10.1016/j.foodchem.2015.05.088
    [15] 郅麗超, 張琳依, 梁馨元, 等. 天然活性成分對α-葡萄糖苷酶抑制作用的研究進展[J]. 食品安全質量檢測學報,2021,12(6):2276?2282. [ZHI Lichao, ZHANG Linyi, LIANG Xinyuan, et al. Research progress on the inhibitory effect of natural active ingredients on α-glucosidase[J]. Journal of Food Safety and Quality,2021,12(6):2276?2282.

    ZHI Lichao, ZHANG Linyi, LIANG Xinyuan, et al. Research progress on the inhibitory effect of natural active ingredients on α-glucosidase[J]. Journal of Food Safety and Quality, 2021, 12(6): 2276-2282.
    [16] 陳慧, 熊磊, 王文君. 植物次生代謝產物來源的α-葡萄糖苷酶抑制劑研究進展[J]. 中國中藥雜志,2017,42(15):2915?2924. [CHEN Hui, XIONG Lei, WANG Wenjun. Reviews on α-glucosidase inhibitor from plant secondary metabolites[J]. China Journal of Chinesemateria Medica,2017,42(15):2915?2924.

    CHEN Hui, XIONG Lei, WANG Wenjun. Reviews on α-glucosidase inhibitor from plant secondary metabolites[J]. China Journal of Chinesemateria Medica, 2017, 42(15): 2915-2924.
    [17] ZHANG J, SUN L, DONG Y, et al. Chemical compositions and α-glucosidase inhibitory effects of anthocyanidins from blueberry, blackcurrant and blue honeysuckle fruits[J]. Food Chemistry,2019,299:125102. doi:  10.1016/j.foodchem.2019.125102
    [18] LI R, WANG Q, ZHAO M, et al. Flavonoid glycosides from seeds of Hippophae rhamnoides subsp. sinensis with alpha-glucosidase inhibition activity[J]. Fitoterapia,2019,137:104248. doi:  10.1016/j.fitote.2019.104248
    [19] 南京中醫藥大學. 中藥大辭典[M]. 上海: 上??茖W技術出版社, 2006: 1397-1398

    Nanjing University of Chinese Medicine. Chinese materia medica dictionary[M]. Shanghai: Shanghai Scientific & Technical Literature Publishers, 2006: 1397-1398.
    [20] 陳雅, 李貴, 吳帥玲, 等. 紅果參葉中總黃酮的提取工藝初步探討[J]. 中國野生植物資源,2014,33(2):24?27. [CHEN Ya, LI Gui, WU Shuailing, et al. Preliminary discussion on extration of total flavonids from the leaves of “Hong Guoshen” plant[J]. Chinese Wild Plant Resources,2014,33(2):24?27. doi:  10.3969/j.issn.1006-9690.2014.02.007

    CHEN Ya, LI Gui, WU Shuailing, et al. Preliminary discussion on extration of total flavonids from the leaves of “Hong Guoshen” plant[J]. Chinese Wild Plant Resources, 2014, 33(2): 24-27. doi:  10.3969/j.issn.1006-9690.2014.02.007
    [21] 陳莉華, 王曉靜, 肖琴, 等. 紅果參果膠提取物的抗氧化作用研究[J]. 食品工業科技,2015,36(4):143?146. [CHEN Lihua, WANG Xiaojing, XIAO Qin, et al. Study on antioxidant activities of pectin from Hong Guo ginseng[J]. Science and Technology of Food Industry,2015,36(4):143?146.

    CHEN Lihua, WANG Xiaojing, XIAO Qin, et al. Study on antioxidant activities of pectin from Hong Guo ginseng[J]. Science and Technology of Food Industry, 2015, 36(4): 143-146.
    [22] 陳莉華, 龍進國, 譚林艷, 等. 紅果參多糖的提取純化及抗氧化活性研究[J]. 天然產物研究與開發,2013,25:170?173. [CHEN Lihua, LONG Jinguo, TAN Linyan, et al. Extraction and purification of polysaccharides from Hong Guo ginseng and the comparison of antioxidant activity[J]. Natural Product Research and Development,2013,25:170?173. doi:  10.3969/j.issn.1001-6880.2013.02.005

    CHEN Lihua, LONG Jinguo, TAN Linyan, et al. Extraction and purification of polysaccharides from Hong Guo ginseng and the comparison of antioxidant activity[J]. Natural Product Research and Development, 2013, 25: 170-173. doi:  10.3969/j.issn.1001-6880.2013.02.005
    [23] 李斌, 李貴, 陳功錫, 等. 紅果參果實多糖的提取及其單糖組分研究[J]. 亞熱帶植物科學,2015,44(1):13?17. [LI Bin, LI Gui, CHEN Gongxi, et al. Extraction and composition of polysaccharide from the fruits of Campnumoea lancifolia[J]. Subtropical Plant Science,2015,44(1):13?17. doi:  10.3969/j.issn.1009-7791.2015.01.003

    LI Bin, LI Gui, CHEN Gongxi, et al. Extraction and composition of polysaccharide from the fruits of Campnumoea lancifolia[J]. Subtropical Plant Science, 2015, 44(1): 13-17. doi:  10.3969/j.issn.1009-7791.2015.01.003
    [24] 王曉靜, 陳莉華, 莫宇婷. 紅果參黃酮與VC的協同抗氧化活性[J]. 食品發酵與工業,2014,40(12):111?115. [WANG Xiaojing, CHEN Lihua, MO Yuting. Cooperative antioxidant effects of flavonoids from Hong Guo ginseng and VC[J]. Food and Fermentation Industries,2014,40(12):111?115.

    WANG Xiaojing, CHEN Lihua, MO Yuting. Cooperative antioxidant effects of flavonoids from Hong Guo ginseng and VC[J]. Food and Fermentation Industries, 2014, 40(12): 111-115.
    [25] XIANG Z, LIN C, ZHU Y, et al. Phytochemical profiling of antioxidative polyphenols and anthocyanins in the wild plant Campanumoea lancifolia (Roxb. ) Merr[J]. International Journal of Food Propertise,2021,24(1):105?114. doi:  10.1080/10942912.2020.1867570
    [26] 宛美志, 孟憲軍. 蔓越莓花色苷的組成鑒定及抗氧化能力[J]. 食品科學,2018,39(22):45?50. [WAN Meizhi, MENG Xianjun. Anthocyanin composition and antioxidant activity of cranberry[J]. Food Science,2018,39(22):45?50. doi:  10.7506/spkx1002-6630-201822008

    WAN Meizhi, MENG Xianjun. Anthocyanin composition and antioxidant activity of cranberry[J]. Food Science, 2018, 39(22): 45-50. doi:  10.7506/spkx1002-6630-201822008
    [27] 鄧菊慶, 柏春玲, 楊學芳, 等. 紫外可見分光光度法測定不同品種柑橘皮中總黃酮含量[J]. 安徽農業科學,2020,48(9):210?211,252. [DENG Juqing, BAI Chunling, YANG Xuefang, et al. Determination of total flavonoids in different varieties of citrus peels by ultraviolet-visible spectrophotometry[J]. Journal of Anhui Agricultural Sciences,2020,48(9):210?211,252. doi:  10.3969/j.issn.0517-6611.2020.09.058

    DENG Juqing, BAI Chunling, YANG Xuefang, et al. Determination of total flavonoids in different varieties of citrus peels by ultraviolet-visible spectrophotometry[J]. Journal of Anhui Agricultural Sciences, 2020, 48(9): 210-211, 252. doi:  10.3969/j.issn.0517-6611.2020.09.058
    [28] 王藝菲, 辛秀蘭, 陳亮, 等. pH示差法測定不同種類藍果忍冬總花色苷含量[J]. 食品研究與開發,2014,35(7):75?77. [WANG Yifei, XIN Xiulan, CHEN Liang, et al. Total anthocyanins content in different species of Lonicera cearulea Linn. by pH-differential spectrophotometry[J]. Food Research and Development,2014,35(7):75?77. doi:  10.3969/j.issn.1005-6521.2014.07.021

    WANG Yifei, XIN Xiulan, CHEN Liang, et al. Total anthocyanins content in different species of Lonicera cearulea Linn. by pH-differential spectrophotometry[J]. Food Research and Development, 2014, 35(7): 75-77. doi:  10.3969/j.issn.1005-6521.2014.07.021
    [29] 王鳳娟, 孫飛龍, 葉文文, 等. pH示差法測定紅菊苣中花青素條件的優化[J]. 包裝與食品機械,2018,36(5):61?64. [WANG Fengjuan, SUN Feilong, YE Wenwen, et al. Optimization of analytical conditions for determining content of anthocyanin in Cichoricum intybus Var. Foliosum Hegi by pH differential method[J]. Packaging and Food Machinery,2018,36(5):61?64. doi:  10.3969/j.issn.1005-1295.2018.05.012

    WANG Fengjuan, SUN Feilong, YE Wenwen, et al. Optimization of analytical conditions for determining content of anthocyanin in Cichoricum intybus Var. Foliosum Hegi by pH differential method[J]. Packaging and Food Machinery, 2018, 36(5): 61-64. doi:  10.3969/j.issn.1005-1295.2018.05.012
    [30] VEGA A J D, HECTOR R E, JOSE L G J, et al. Effect of solvents and extraction methods on total anthocyanins, phenolic compounds and antioxidant capacity of Renealmia alpinia (Rottb.) Maas peel[J]. Czech Journal of Food Sciences,2017,35(5):456?465. doi:  10.17221/316/2016-CJFS
    [31] JIANG T, MAO Y, SUI L, et al. Degradation of anthocyanins and polymeric color formation during heat treatment of purple sweet potato extract at different pH[J]. Food Chemistry,2019,274:460?470. doi:  10.1016/j.foodchem.2018.07.141
    [32] 譚曉舒, 吳建文, 梨貴卿, 等. 火麻仁油總酚含量福林酚測定法的優化[J]. 食品研究與開發,2021,42(2):166?173. [TAN Xiaoshu, WU Jianwen, LI Gui-qing, et al. Optimization of folin-ciocalteu method for the determination of total polyphenols in hemp seed oil[J]. Food Research and Development,2021,42(2):166?173.

    TAN Xiaoshu, WU Jianwen, LI Gui-qing, et al. Optimization of folin-ciocalteu method for the determination of total polyphenols in hemp seed oil[J]. Food Research and Development, 2021, 42(2): 166-173.
    [33] GOKHAN Z H. A study on in vitro enzyme inhibitory properties of asphodelineanatolica: New sources of natural inhibitors for public health problems[J]. Industrial Crops and Products,2016,83:39?43. doi:  10.1016/j.indcrop.2015.12.033
    [34] 衛強, 紀小影, 徐飛, 等. 木槿葉化學成分及抑制α-葡萄糖苷酶活性研究[J]. 中藥材,2015,38(5):975?979. [WEI Qiang, JI Xiaoying, XU Fei, et al. Chemical constituents from leaves of Hibiscus syriacus and their α-glucosidase inhibitory activities[J]. Journal of Chinese Medicinal Materials,2015,38(5):975?979.

    WEI Qiang, JI Xiaoying, XU Fei, et al. Chemical constituents from leaves of Hibiscus syriacus and their α-glucosidase inhibitory activities[J]. Journal of Chinese Medicinal Materials, 2015, 38(5): 975-979.
    [35] 范金波, 蔡茜彤, 馮敘橋, 等. 桑葚、藍莓、黑加侖中多酚類物質的抗氧化活性[J]. 食品與發酵工業,2015,41(2):157?162. [FAN Jinbo, CAI Xitong, FENG Xuqiao, et al. Phenolic content and antioxidant capacity of blueberry, mulberry and blackcurrant[J]. Food and Fermention Industries,2015,41(2):157?162.

    FAN Jinbo, CAI Xitong, FENG Xuqiao, et al. Phenolic content and antioxidant capacity of blueberry, mulberry and blackcurrant[J]. Food and Fermention Industries, 2015, 41(2): 157-162.
    [36] 張上上, 鄭姝寧, 王學濤, 等. 超高效液相色譜-飛行時間-串聯質譜法對3種藍靛果忍冬果實中花青苷的比較分析[J]. 食品科學,2020,41(20):256?262. [ZHANG Shangshang, ZHENG Shuning, WANG Xuetao, et al. Comparative analysis of anthocyanins in the fruits of three varieties of blue honeysuckle (Lonicera caerulea L.) by ultra-high performance liquid chromatography-time of flight-tandem mass spectrometry[J]. Food Science,2020,41(20):256?262. doi:  10.7506/spkx1002-6630-20190822-223

    ZHANG Shangshang, ZHENG Shuning, WANG Xuetao, et al. Comparative analysis of anthocyanins in three Lonicera edulis fruits by ultra high performance liquid chromatography time of flight tandem mass spectrometry[J]. Food Science, 2020, 41(20): 256-262. doi:  10.7506/spkx1002-6630-20190822-223
    [37] SARAVANAKUMAR K, PARK S J, MARIADOSS A V A, et al. Chemical composition, antioxidant, and anti-diabetic activities of ethyl acetate fraction of Stachys riederi var. japonica (Miq.) in streptozotocin-induced type 2 diabetic mice[J]. Food and Chemical Toxicology,2021,155:112374. doi:  10.1016/j.fct.2021.112374
    [38] CORRALES G, FERNANDEZ-MAYORALAS A, GARCIA-JUNCEDA E, et al. A new strategy for liquid-phase synthesis of disaccharides based on the use of glycosidases[J]. Biocatalysis and Biotransformation,2000,18(4):271?281. doi:  10.3109/10242420009015250
    [39] SIOMH S, ZAINAL A. Chemical profiling of Curcuma aeruginosa Roxb. rhizome using different techniques of solvent extraction[J]. Asian Pacific Journal of Tropical Biomedicine,2015,5(5):412?417. doi:  10.1016/S2221-1691(15)30378-6
    [40] GUORUOLUO Y, ZHOU H, WANG W, et al. Chemical constituents from the immature buds of Cinnamomum cassia (Lauraceae)[J]. Biochemical Systematics and Ecology,2018,78:102?105. doi:  10.1016/j.bse.2018.04.008
    [41] OLENNIKOV D N, KASHCHENKO N I. New flavonoids and turkesterone-2-O-cinnamate from leaves of Rhaponticum uniflorum[J]. Chemistry of Natural Compounds,2019,55(2):256?264. doi:  10.1007/s10600-019-02662-2
    [42] HU X, CHEN L, SHI S, et al. Antioxidant capacity and phenolic compounds of Lonicera macranthoides by HPLC-DAD-QTOF-MS/MS[J]. Journal of Pharmaceutical and Biomedical Analysis,2016,124:254?260. doi:  10.1016/j.jpba.2016.03.008
    [43] KOLEY T K, KHAN Z, OULKAR D, et al. Profiling of polyphenols in phalsa (Grewia asiatica L.) fruits based on liquid chromatography high resolution mass spectrometry[J]. Journal of Food Science and Technology,2020,57(2):606?616. doi:  10.1007/s13197-019-04092-y
    [44] NOUI A, BOUDIAR T, BAKHOUCHE A, et al. Chemical characterization of polyphenols from Daucus muricatus growing in Algeria by RP-UHPLC-ESI-QTOF-MS/MS[J]. Natural Product Research,2018,32(8):982?986. doi:  10.1080/14786419.2017.1371162
    [45] SIRICHAI A, SIRINTORN Y, PIYAWAN C, et al. Cyanidin-3-rutinoside alleviates postprandial hyperglycemia and its synergism with acarbose by inhibition of intestinal α-glucosidase[J]. Journal of Clinical Biochemistry and Nutrition,2011,49:36?41. doi:  10.3164/jcbn.10-116
    [46] TSUBASA T, SHO N, MASAKI K, et al. Delphinidin 3-rutinoside-rich blackcurrant extract ameliorates glucose tolerance by increasing the release of glucagon-like peptide-1secretion[J]. Food Science Nutrition,2017,5:929?933. doi:  10.1002/fsn3.478
    [47] 朱曉丹, 江冰潔, 劉新元, 等. 天然產物中黃酮多酚及生物堿類化合物治療2型糖尿病研究進展[J]. 中國現代中藥,2019,21(11):1592?1598. [Zhu Xiaodan, JIANG Bingjie, Liu Xinyuan, et al. Mechanism and research progress of flavonoids, polyphenols and alkaloids in natural products for type 2 diabetes mellitus[J]. Modern Chinese Medicine,2019,21(11):1592?1598.

    Zhu Xiaodan, JIANG Bingjie, Liu Xinyuan, et al. Mechanism and research progress of flavonoids, polyphenols and alkaloids in natural products for type 2 diabetes mellitus[J]. Modern Chinese Medicine, 2019, 21(11): 1592-1598.
    [48] YAN J, ZHANG G, PAN J, et al. α-Glucosidase inhibition by luteolin: Kinetics, interaction andmolecular docking[J]. International Journal of Biological Macromolecules,2014,64:213?223. doi:  10.1016/j.ijbiomac.2013.12.007
    [49] SUN L, MIAO M. Dietary polyphenols modulate starch digestion and glycaemic level: A review[J]. Critical Reviews in Food Science and Nutrition,2020,60(4):541?555. doi:  10.1080/10408398.2018.1544883
    [50] YOON I S, CHO S S. Effects of lobetyolin on xanthine oxidase activity in vitro and in vivo: Weak and mixed inhibition[J]. Natural Product Research,2021,35(10):1667?1670. doi:  10.1080/14786419.2019.1622108
    [51] WU T, LUO J, XU B. In vitro antidiabetic effects of selected fruits and vegetables against glycosidase and aldose reductase[J]. Food Science & Nutrition,2015,3(6):495?505.
    [52] WANG Y, XIANG L, WANG C, et al. Antidiabetic and antioxidant effects and phytochemicals of mulberry fruit (Morus alba L.) polyphenol enhanced extract[J]. Plos One,2013,8(7):e71144. doi:  10.1371/journal.pone.0071144
    [53] FU X, YANG H, MA C, et al. Characterization and inhibitory activities on α-amylase and α-glucosidase of the polysaccharide from blue honeysuckle berries[J]. International Journal of Biological Macromolecules,2020,163:414?422. doi:  10.1016/j.ijbiomac.2020.06.267
    [54] 石碧, 狄瑩. 植物多酚[M]. 北京: 科學出版社, 2002: 5-30

    SHI Bi, DI Ying. Plant polyphenols[M]. Beijing: Science Press, 2002: 5-30.
    [55] PROENC C, RIBEIRO D, FREITAS M, et al. Flavonoids as potential agents in the management of type 2 diabetes through the modulation of a-amylase and a-glucosidase activity: A review[J]. Critical Reviews in Food Science and Nutrition,2020:1?71.
  • 加載中
圖(3) / 表(3)
計量
  • 文章訪問數:  35
  • HTML全文瀏覽量:  7
  • PDF下載量:  5
  • 被引次數: 0
出版歷程
  • 收稿日期:  2021-11-16
  • 網絡出版日期:  2022-08-11
  • 刊出日期:  2022-08-11

目錄

    /

    返回文章
    返回

    重要通知

    專欄綠色通道:食品營養素包埋與遞送