• CA
  • JST
  • FSTA
  • SCOPUS
  • 北大核心期刊
  • 中國科技核心期刊CSTPCD
  • 中國精品科技期刊
  • RCCSE中國核心學術期刊
  • 中國農業核心期刊
  • 中國生物醫學文獻服務系統SinoMed收錄期刊
中國精品科技期刊2020

果蔬冷鏈過程中多尺度熱質傳遞的研究進展

馬永輝 劉貴珊 何建國 康寧波 陳首濤 尹俊杰 劉夢琪 賈莉莉

馬永輝,劉貴珊,何建國,等. 果蔬冷鏈過程中多尺度熱質傳遞的研究進展[J]. 食品工業科技,2022,43(16):9?17. doi:  10.13386/j.issn1002-0306.2021110311
引用本文: 馬永輝,劉貴珊,何建國,等. 果蔬冷鏈過程中多尺度熱質傳遞的研究進展[J]. 食品工業科技,2022,43(16):9?17. doi:  10.13386/j.issn1002-0306.2021110311
MA Yonghui, LIU Guishan, HE Jianguo, et al. Recent Advances on Multi-scale Heat and Mass Transfer of Fruits and Vegetables during the Cold Chain Process[J]. Science and Technology of Food Industry, 2022, 43(16): 9?17. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2021110311
Citation: MA Yonghui, LIU Guishan, HE Jianguo, et al. Recent Advances on Multi-scale Heat and Mass Transfer of Fruits and Vegetables during the Cold Chain Process[J]. Science and Technology of Food Industry, 2022, 43(16): 9?17. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2021110311

果蔬冷鏈過程中多尺度熱質傳遞的研究進展

doi: 10.13386/j.issn1002-0306.2021110311
基金項目: 寧夏回族自治區重點研發計劃重大項目(2018BCF01001)。
詳細信息
    作者簡介:

    馬永輝(1998?),男,碩士,研究方向:農產品加工與貯藏工程,E-mail:1913771234@qq.com

    通訊作者:

    劉貴珊(1979?),男,博士,教授,研究方向:農產品加工與貯藏工程,E-mail:liugs@nxu.edu.cn

  • 中圖分類號: TS255.3

Recent Advances on Multi-scale Heat and Mass Transfer of Fruits and Vegetables during the Cold Chain Process

  • 摘要: 果蔬冷鏈過程由于管控粗放、損耗大等問題易造成果蔬內部結構損傷,引起品質劣變;同時,果蔬內部的水分和熱量會發生動態遷移,不利于果蔬的貯藏和銷售。因此,明確果蔬冷鏈過程多尺度熱質傳遞機理是目前該領域亟待解決的問題。本文闡述了用于果蔬多尺度建模的數值成像技術,探討果蔬冷鏈過程熱質傳遞機理的多尺度計算流體動力學建模方法,以及建模中存在的基本問題和解決方案,并優化現有的熱質傳遞模型,設計更高效合理的冷卻系統,以期為果蔬冷鏈過程多尺度熱質傳遞機理研究和減損保鮮提供理論依據。
  • 圖  1  果蔬冷鏈過程的多尺度特征

    Figure  1.  Multi-scale characteristics of fruits and vegetables during the cold chain process

    圖  2  冷卻系統的多尺度特性

    Figure  2.  Multi-scale characteristics of the cooling system

    表  1  多尺度計算流體動力學建模在果蔬冷鏈中的應用

    Table  1.   Application of multi-scale computational fluid dynamics modeling in the cold chain of fruits and vegetables

    研究方法建模軟件研究內容研究結果參考文獻
    FEMANSYS FLUENT草莓(單體、包裝箱、廂體碼垛)壓差預冷過程中的多尺度數值模擬理論模擬與實驗驗證吻合較好,建立了草莓預冷效果評價體系[25]
    FEMCOMSOL對冷藏車箱內的對流傳熱進行數值模擬和實驗分析,研究冷氣對流分布均勻性對比實驗數據,預測的溫度偏差為3~4 K,
    模型具有可靠性
    [60]
    FEMCOMSOL基于蔬菜的幾何、生物學特性,建立蔬菜的傳熱仿真模型,研究蔬菜冷激處理(cold shock treatment,CST)過程的傳熱機理模擬結果與實測結果較吻合;同時,在失重率、硬度和過氧化物酶活(POD)等品質特性方面,2 ℃冷水處理40 min的CST對黃瓜的保鮮效果最好[61]
    FVMICEM ANSYS采用直接計算流體力學方法研究蘋果預冷過程中襯墊與箱壁間空隙對蘋果
    預冷效果的影響
    襯墊與箱壁間空隙寬度的最佳增量為7.5 mm時能獲得最佳預冷效果,為預冷過程中包裝箱設計優化提供了新思路[62]
    FVMANSYS CFX 17.2通過X-ray μCT掃描生成水果數值模型,模擬壓差預冷時的降溫過程計算機輔助設計法有助于精確地模擬對流冷卻過程,提高冷鏈效率和冷卻均勻性[63]
    FVMANSYS FLUENT 15.0優化果蔬壓差預冷過程中通風孔以及包裝箱的設計參數優化后的通風孔提高了冷卻速率和均勻性、氣流阻力和能源效率[64]
    FDM編程計算對果蔬氣調貯藏冷卻階段溫度變化進行數值模擬及實驗驗證模擬溫度與試驗溫度誤差≤2 ℃,試驗結果與模擬結果吻合較好[65]
    FDMVB6.0編程建立柱狀與球狀果蔬的普適傳熱模型,研究果蔬采后熱處理過程的傳熱機理模型能夠準確預測多種邊界條件下柱狀與球狀果蔬熱處理時的組織溫度變化,模型預測值與實測值的平均相對誤差及均方根誤差均低于5%[66]
    LBMOpenLB研究冷藏車內冷空氣流速和溫度分布以及在湍流條件下的熱性能,并與冷藏車實驗數據進行比較模型能夠準確預測冷卻負載區域內的流速和溫度分布,同時量化通過隔熱壁的熱通量[57]
    下載: 導出CSV

    表  2  不同解決方案在多尺度模型耦合中的應用

    Table  2.   Application of different solutions to multiscale model coupling

    研究方法研究對象類別研究內容研究結果參考文獻
    MVA多孔介質基于MVA推導出顆粒填充柱微宏觀尺度的函數關系,結合數值模擬計算了對應顆粒填充柱內溶質的彌散系數可以定性預測實際顆粒填充柱內的溶質彌散行為,為開展更復雜的多尺度傳遞過程數值模擬研究奠定基礎[74]
    MVA多孔介質基于MVA和熱力學理論,研究飽和土體跨尺度、多過程耦合問題建立的飽和土體跨尺度、多過程耦合模型的熱力學框架可以實現不同尺度間有機結合和聯系[75]
    HMT多孔介質基于HMT建立了孔隙粘彈性聚合物的多尺度不飽和熱質遷移模型模型能夠較準確地預測馬鈴薯油炸過程中組織孔隙中的水分含量和溫度分布[76]
    HMT多孔介質基于HMT和有FEM研究了玉米籽粒干燥過程中的水分遷移問題模型能較好的預測干燥過程中玉米籽粒皮下、胚乳、胚芽等不同區域的水分擴散通量[77,78]
    TCAT多孔介質基于TCAT模擬了多相多孔介質中的
    熱質遷移現象
    為多相多孔介質系統提供了精確的微觀到宏觀的尺度升級建??蚣芎湍P?/td>[79]
    HT多孔介質基于HM推導出多孔金屬鋰電池動力學的質量和電荷傳輸方程,建立了質量和
    電荷遷移模型
    模型可以準確預測電池動力學的質量和電荷傳輸,從而實現更高的運行效率、提高了電池性能[80]
    HT多孔介質基于HM研究了木材干燥過程中的導熱現象,建立了導熱模型模型預測了木材的導熱系數,根據微觀尺度上元素組分的微觀結構和物理性質可以推測宏觀木材樣品的整體變化[81]
    RGT多孔介質基于RGT與滲流方法相結合,研究了裂縫介質中從微觀尺度到宏觀尺度的流體流動現象為處理裂縫系統復雜的連通性以及所涉及的不同尺度與所需尺度之間的復雜關系提供了一種簡便方法[82]
    下載: 導出CSV
    人妻AV无码系列一区二区三区
  • [1] AJANI C, CURCIO S, DEJCHANCHAIWONG R, et al. Influence of shrinkage during natural rubber sheet drying: Numerical modeling of heat and mass transfer[J]. Applied Thermal Engineering,2018,149:798?806.
    [2] EUSTON S R. Modelling and computer simulation of food structures[J]. Food Microstructures,2013:336?385.
    [3] HO Q T, VERBOVEN P, MEBATSION H K, et al. Microscale mechanisms of gas exchange in fruit tissue[J]. New Phytologist,2009,182(1):163?174. doi:  10.1111/j.1469-8137.2008.02732.x
    [4] ABERA M K, AREGAWI W A, HO Q T, et al. Multiscale modeling of food processes[J]. Module in Food Sciences, 2016.
    [5] WU X H, CHANG Z J, ZHAO X L, et al. A multi-scale approach for refrigerated display cabinet coupled with supermarket HVAC system–Part I: Methodology and verification[J]. International Journal of Heat and Mass Transfer,2015,87:673?684. doi:  10.1016/j.ijheatmasstransfer.2015.04.004
    [6] WU X H, CHANG Z J, ZHAO X L, et al. A multi-scale approach for refrigerated display cabinet coupled with supermarket HVAC system-Part II: The performance of VORDC and energy consumption analysis[J]. International Journal of Heat and Mass Transfer,2015,87:685?692. doi:  10.1016/j.ijheatmasstransfer.2015.04.003
    [7] AJANI C K, ZHU Z W, SUN D W. Recent advances in multiscale CFD modelling of cooling processes and systems for the agrifood industry[J]. Critical Reviews in Food Science and Nutrition,2020(3):1?16.
    [8] HO Q T, CARMELIET J, DATTA A K, et al. Multiscale modeling in food engineering[J]. Journal of Food Engineering,2013,114(3):279?291. doi:  10.1016/j.jfoodeng.2012.08.019
    [9] KHAN M, KUMAR C, JOARDDER M, et al. Determination of appropriate effective diffusivity for different food materials[J]. Drying Technology,2016,35(3):335?346.
    [10] OMAR M U H J, KARIM A. Development of a porosity prediction model based on shrinkage velocity and glass transition temperature[J]. Drying Technology,2019,37(15):1988?2004. doi:  10.1080/07373937.2018.1555540
    [11] 魏高亮. 纖維空氣分布系統送風模式下果蔬冷藏庫流場特性研究[D]. 西安: 西安建筑科技大學, 2020.

    WEI G L. Airflow and heat transfer characteristics in a cold storage for fruits and vegetables based on fiber air dispersion system[D]. Xi'an: Xi'an University of Architecture and Technology, 2020.
    [12] DURET S, HOANG H M, FLICK D, et al. Experimental characterization of airflow, heat and mass transfer in a cold room filled with food products[J]. International Journal of Refrigeration,2014,46(2-3):17?25.
    [13] LAGUERRE O, DURET S, HOANG H M, et al. Simplified heat transfer modeling in a cold room filled with food products[J]. Journal of Food Engineering,2015,149:78?86. doi:  10.1016/j.jfoodeng.2014.09.023
    [14] HOANG H M, DURET S, FLICK D, et al. Preliminary study of airflow and heat transfer in a cold room filled with apple pallets: Comparison between two modelling approaches and experimental results[J]. Applied Thermal Engineering,2015,76:367?381. doi:  10.1016/j.applthermaleng.2014.11.012
    [15] DEFRAEYE T, VERBOVEN P, NICOLAI B. CFD modelling of flow and scalar exchange of spherical food products: Turbulence and boundary-layer modelling[J]. Journal of Food Engineering,2013,114(4):495?504. doi:  10.1016/j.jfoodeng.2012.09.003
    [16] TIAN Y, CHEN Z, ZHU Z, et al. Effects of tissue pre-degassing followed by ultrasound-assisted freezing on freezing efficiency and quality attributes of radishes[J]. Ultrasonics Sonochemistry,2020:105162.
    [17] GETAHUN S, AMBAW A, DELELE M, et al. Analysis of airflow and heat transfer inside fruit packed refrigerated shipping container: Part I–Model development and validation[J]. Journal of Food Engineering,2017,203:58?68. doi:  10.1016/j.jfoodeng.2017.02.010
    [18] DEFRAEYE T, VERBOVEN P, DEROMED, et al. Stomatal transpiration and droplet evaporation on leaf surfaces by a microscale modelling approach[J]. International Journal of Heat & Mass Transfer,2013,65:180?191.
    [19] GL A, AGB C, LBA C, et al. Direct numerical simulation of spray droplet evaporation in hot turbulent channel flow[J]. International Journal of Heat and Mass Transfer,2020:160.
    [20] DRIKAKIS D, FRANK M, TABOR G. Multiscale computational fluid dynamics[J]. Energies,2019,12(17):3272. doi:  10.3390/en12173272
    [21] GEHRKE M, BANARI A, RUNG T. Performance of under-resolved, model-free LBM simulations in turbulent shear flows[M]. Progress in Hybrid RANS-LES Modelling, 2020, 143: 3-18.
    [22] ARGYROPOULOS C D, MARKATOS N C. Recent advances on the numerical modelling of turbulent flows[J]. Applied Mathematical Modelling,2015,39(2):693?732. doi:  10.1016/j.apm.2014.07.001
    [23] HAMI K. Turbulence modeling a review for different used methods[J]. International Journal of Heat and Technology,2021,39(1):227?234. doi:  10.18280/ijht.390125
    [24] 白通通. 果蔬冷藏庫豎壁貼附送風模式流場特性的研究[D]. 西安: 西安建筑科技大學, 2018.

    BAI T T. Airflow and heat transfer characteristics in a cold storage for fruits and vegetables based on vertical wall attached jet[D]. Xi'an: Xi'an University of Architecture and Technology, 2018.
    [25] 王達. 果蔬壓差通風預冷研究及對其品質影響分析[D]. 濟南: 山東建筑大學, 2016.

    WANG D. Forced-air precooling research of fruit and vegetable and analysisof effects on its quality[D]. Jinan: Shandong Jianzhu University, 2016.
    [26] SAJADIYE S M, AHMADI H, ZOLFAGHARI M, et al. A multi-scale three-dimensional CFD model of a full loaded cool storage[J]. International Journal of Food Engineering,2013,9(2):163?178. doi:  10.1515/ijfe-2012-0015
    [27] DELELE M A, SCHENK A, TIJSKENS E, et al. Optimization of the humidification of cold stores by pressurized water atomizers based on a multiscale CFD model[J]. Journal of Food Engineering,2009,91(2):228?239. doi:  10.1016/j.jfoodeng.2008.08.027
    [28] DELELE M A, SCHENK A, RAMON H, et al. Evaluation of a chicory root cold store humidification system using computational fluid dynamics[J]. Journal of Food Engineering,2009,94(1):110?121. doi:  10.1016/j.jfoodeng.2009.03.004
    [29] SCHOEMAN L, WILLIAMS P, DU PLESSIS A, et al. X-ray micro-computed tomography (μCT) for non-destructive characterisation of food[J]. Trends in Food Science & Technology,2016,47:10?24.
    [30] WANG Z, HERREMANS E, JANSSEN S, et al. Visualizing 3D food microstructure using tomographic methods: Advantages and disadvantages[J]. Annual Review of Food Science and Technology,2018,9:323?343. doi:  10.1146/annurev-food-030117-012639
    [31] QUANG T H, VERBOVEN P, SOLOMON W F, et al. A multiphase pore scale network model of gas exchange in apple fruit[J]. Food & Bioprocess Technology,2014,7(2):482?495.
    [32] HERREMANS E, VERBOVEN P, BONGAERS E, et al. Characterisation of 'Braeburn' browning disorder by means of X-ray micro-CT[J]. Postharvest Biology and Technology,2013,75:114?124. doi:  10.1016/j.postharvbio.2012.08.008
    [33] HERREMANS E, VERBOVEN P, DEFRAEYE T, et al. X-ray CT for quantitative food microstructure engineering: The apple case[J]. Nuclear Inst & Methods in Physics Research B,2014,324:88?94.
    [34] JANSSENS, VERBOVENP, NUGRAHAB, et al. 3D pore structure analysis of intact 'Braeburn' apples using X-ray micro-CT[J]. Postharvest Biology and Technology,2019:159.
    [35] MUZIRI T, THERON K I, CANTRE D, et al. Microstructure analysis and detection of mealiness in 'Forelle' pear (Pyrus communis L.) by means of X-ray computed tomography[J]. Postharvest Biology & Technology,2016,120:145?156.
    [36] CANTRE D, HERREMANS E, VERBOVEN P, et al. Characterization of the 3-D microstructure of mango (Mangiferaindica L. cv. Carabao) during ripening using X-ray computed microtomography[J]. Innovative Food Science & Emerging Technologies,2014,24(8):28?39.
    [37] CANTRE D, EAST A, VERBOVEN P, et al. Microstructural characterisation of commercial kiwifruit cultivars using X-ray micro computed tomography[J]. Postharvest Biology and Technology,2014,92(3):79?86.
    [38] HERREMANS E, MELADO-HERREROS A, DEFRAEYE T, et al. Comparison of X-ray CT and MRI of watercore disorder of different apple cultivars[J]. Postharvest Biology and Technology,2014,87:42?50. doi:  10.1016/j.postharvbio.2013.08.008
    [39] KAMALT, ZHANGT, SONG Y K, et al. Water dynamics and physicochemical analysis of two different varieties of apple jam (Fuji) and (Yinduqing) by LF-NMR and MRI[J]. International Journal of Food Engineering, 2018, 14(3).
    [40] DEFRAEYE T, LEHMANN V, GROSS D, et al. Application of MRI for tissue characterisation of 'Braeburn' apple[J]. Postharvest Biology and Technology,2013,75:95?105.
    [41] 孫炳新, 趙宏俠, 馮敘橋, 等. 基于低場核磁和成像技術的鮮棗貯藏過程水分狀態的變化研究[J]. 中國食品學報,2016,16(5):252?257. [SUN B X, ZHAO H X, FENG X Q, et al. Studies on the change of moisture state of fresh jujube during storagebase on LF-NMR and MRI[J]. Journal of Chinese Institute of Food Science and Technology,2016,16(5):252?257.

    SUN B X, ZHAO H X, FENG X Q, et al. Studies on the change of moisture state of fresh jujube during storagebase on LF-NMR and MRI[J]. Journal of Chinese Institute of Food Science and Technology, 2016, 16(5): 252-257.
    [42] MUSSE M, DE GUIO F, QUELLEC S, et al. Quantification of microporosity in fruit by MRI at various magnetic fields: Comparison with X-ray microtomography[J]. Magnetic Resonance Imaging,2010,28(10):1525?1534. doi:  10.1016/j.mri.2010.06.028
    [43] TURILLAZZI E, KARCH S B, NERI M, et al. Confocal laser scanning microscopy. Using new technology to answer old questions in forensic investigations[J]. International Journal of Legal Medicine,2008,122(2):173?177. doi:  10.1007/s00414-007-0208-0
    [44] WUYTS N, PALAUQUI J C, CONEJERO G, et al. High-contrast three-dimensional imaging of the arabidopsis leaf enables the analysis of cell dimensions in the epidermis and mesophyll[J]. Plant Methods,2010,6(1):17. doi:  10.1186/1746-4811-6-17
    [45] STRAADT I K, THYBO A K, BERTRAM H C. NaCl-induced changes in structure and water mobility in potato tissue as determined by CLSM and LF-NMR[J]. LWT-Food Science and Technology,2008,41(8):1493?1500. doi:  10.1016/j.lwt.2007.09.007
    [46] JHA P K, VIDOT K, XANTHAKIS E, et al. Benchmarking of techniques used to assess the freeze damage in potatoes[J]. Journal of Food Engineering,2019,262(DEC.):60?74.
    [47] 項海波, 劉東武, 張苗, 等. 基于葉綠素熒光強度分析蔬菜重金屬污染[J]. 食品研究與開發,2013,34(22):3. [XIANG H B, LIU D W, ZHANG M, et al. Analysis of heavy metal pollution in vegetables based on the technique of laser scanning confocal microscope[J]. Food Research and Development,2013,34(22):3.

    XIANG H B, LIU D W, ZHANG M, et al. Analysis of heavy metal pollution in vegetables based on the technique of laser scanning confocal microscope[J]. Food Research and Development, 2013, 34(22): 3.
    [48] VERAVERBEKE E A, BRUAENE N V, OOSTVELDT P V, et al. Non destructive analysis of the wax layer of apple (Malus domestica Borkh.) by means of confocal laser scanning microscopy[J]. Planta,2001,213(4):525?533. doi:  10.1007/s004250100528
    [49] AMBAW A, VERBOVEN P, DEFRAEYE T, et al. Porous medium modeling and parameter sensitivity analysis of 1-MCP distribution in boxes with apple fruit[J]. Journal of Food Engineering,2013,119(1):13?21. doi:  10.1016/j.jfoodeng.2013.05.007
    [50] THIJS D, DOMINIQUE D, PIETER V, et al. Cross-scale modelling of transpiration from stomata via the leaf boundary layer[J]. Annals of Botany,2014,114(4):711?723. doi:  10.1093/aob/mct313
    [51] MAJID S S, HOJAT A, MOSTAFA H S, et al. Evaluation of a cooling performance of a typical full loaded cool storage using mono-scale CFD simulation[J]. Modern Applied Science,2012,6(1):102?119.
    [52] VERBOVEN P, FLICK D, NICOLA B M, et al. Modelling transport phenomena in refrigerated food bulks, packages and stacks: Basics and advances[J]. International Journal of Refrigeration,2006,29(6):985?997. doi:  10.1016/j.ijrefrig.2005.12.010
    [53] DELELE M A, KUFFI K D, NICOLAI B, et al. CFD modeling to improve the performance of industrial cooling of large beef carcasses[M]. In book: Computational Fluid Dynamics in Food Processing, 2018.
    [54] HAN J W, BADíA-MELISR, YANG X T, et al. CFD simulation of airflow and heat transfer during forced-air precooling of apples[J]. Journal of Food Process Engineering,2017,40(2):1?11.
    [55] AMBAW A, DEKEYSER D, VANWALLEGHEM T, et al. Experimental and numerical analysis of the spray application on apple fruit in a bin for postharvest treatments[J]. Journal of Food Engineering,2017,202:34?45. doi:  10.1016/j.jfoodeng.2017.01.026
    [56] WU W, DEFRAEYE T. Identifying heterogeneities in cooling and quality evolution for a pallet of packed fresh fruit by using virtual cold chains[J]. Applied Thermal Engineering,2018,133:407?417. doi:  10.1016/j.applthermaleng.2017.11.049
    [57] GAEDTKE M, WACHTER S, RAEDLE M, et al. Application of a lattice boltzmann method combined with a smagorinsky turbulence model to spatially resolved heat flux inside a refrigerated vehicle[J]. Computers & Mathematics with Applications,2018,76(10):2315?2329.
    [58] HIRSCH C. Numerical computation of internal and external flows: The fundamentals of computational fluid dynamics[M]. Elsevier Ltd, 2007.
    [59] VAN DER SMAN R G M. Lattice boltzmann simulation of microstructures[J]. Food Sci Technol,2006,166:15?40.
    [60] CARDINALE T, FAZIO P, GRANDIZIO F, et al. Numerical and experimental computation of airflow in a transport container[J]. International Journal of Heat & Technology,2016,34(4):734?742.
    [61] ZHAO Y, MINGFENG C, AIQIANG C, et al. Analysis about heat transfer of vegetables during cold shock treatment and preservation quality after storage[J]. International Journal of Food Engineering, 2017, 13(3).
    [62] 宮亞芳, 曹玉會. 襯墊與箱壁間空隙對蘋果預冷效果的影響[J]. 中國科學院大學學報,2021,38(2):198?206. [GONG Y F, CAO Y H. Effect of the gap width between tray and box wall on the precooling effectiveness of apples[J]. Journal of University of Chinese Academy of Sciences,2021,38(2):198?206. doi:  10.7523/j.issn.2095-6134.2021.02.006

    GONG Y F, CAO Y H. Effect of the gap width between tray and box wall on the precooling effectiveness of apples[J]. Journal of University of Chinese Academy of Sciences, 2021, 38(2): 198-206. doi:  10.7523/j.issn.2095-6134.2021.02.006
    [63] GRUYTERS W, VERBOVEN P, DIELS E, et al. Modelling cooling of packaged fruit using 3D shape models[J]. Food and Bioprocess Technology,2018,11(3):2008?2020.
    [64] BERRY T M, DEFRAEYE T, NICOLA B M, et al. Multiparameter analysis of cooling efficiency of ventilated fruit cartons using CFD: Impact of vent hole design and internal packaging[J]. Food and Bioprocess Technology,2016,9(9):1481?1493. doi:  10.1007/s11947-016-1733-y
    [65] 季阿敏. 果蔬氣調貯藏冷卻階段溫度變化的數值模擬及驗證[J]. 農業工程學報,2006,22(5):25?28. [JI A M. Numerical simulation and experimental verification of temperature variation during controlled atomosphere cold storage of fruits and vegetables[J]. Transactions of the CSAE,2006,22(5):25?28.

    JI A M. Numerical simulation and experimental verification of temperature variation during controlled atomosphere cold storage of fruits and vegetables[J]. T ransactions of the CSAE, 2006, 22(5): 25-28.
    [66] 尹海蛟, 楊昭, 陳愛強. 果蔬熱處理傳熱過程的數值模擬及驗證[J]. 農業工程學報,2010,26(11):344?348. [YIN H J, YANG Z, CHEN A Q. Numerical simulation and experimental verification of heat transfer for fruits and vegetables during heat treatment[J]. Transactions of the CSAE,2010,26(11):344?348. doi:  10.3969/j.issn.1002-6819.2010.11.058

    YIN H J, YANG Z, CHEN A Q. Numerical simulation and experimental verification of heat transfer for fruits and vegetables during heat treatment[J]. Transactions of the CSAE, 2010, 26(11): 344-348. doi:  10.3969/j.issn.1002-6819.2010.11.058
    [67] AGUILAR-MADERA C G, ESPINOSA-PAREDES G. Neutron diffusion analysis of a fuel pebble with volume averaging method[J]. Journal of Porous Media,2020,23(4):363?381. doi:  10.1615/JPorMedia.2020027522
    [68] SANDHU J S, TAKHAR P S. Verification of hybrid mixture theory based two-scale unsaturated transport processes using controlled frying experiments[J]. Food and Bioproducts Processing,2018,110:26?39. doi:  10.1016/j.fbp.2018.04.004
    [69] WEIGAND T M, SCHULTZ P B, GIFFEN D H, et al. Modeling non-dilute species transport using the thermodynamically constrained averaging theory[J]. Water Resources Research,2018,54(9):6656?6682. doi:  10.1029/2017WR022471
    [70] WELSH Z G, KHAN M, KARIM M A. Multiscale modeling for food drying: A homogenized diffusion approach[J]. Journal of Food Engineering,2020:292.
    [71] JACOB B. Theory and applications of transport in porous media modelling phenomena of flow and transport in porous media[M]. Cham, Switzerland: Springer international publishing AG, 2018.
    [72] BATTIATO I, FERREROV P T, Malley D O, et al. Theory and applications of macroscale models in porous media[J]. Transport in Porous Media,2019,130(1):5?76. doi:  10.1007/s11242-019-01282-2
    [73] ICHISHIMA D, MATSUMURA Y. Renormalization group theory of molecular dynamics[J]. Scientific Reports,2021,11(1):5968?5968. doi:  10.1038/s41598-021-85286-3
    [74] 張照明, 王苗, 閆孝紅. 顆粒填充柱內溶質彌散系數的體積平均方法[J]. 化學工程,2015,43(3):5. [ZHANG Z M, WANG M, YAN X H. Solute dispersion in particle packed columns by volume averaging method[J]. Chemical Engineering,2015,43(3):5. doi:  10.3969/j.issn.1005-9954.2015.03.002

    ZHANG Z M, WANG M, YAN X H. Solute dispersion in particle packed columns by volume averaging method[J]. Chemical Engineering, 2015, 43(3): 5. doi:  10.3969/j.issn.1005-9954.2015.03.002
    [75] 許照剛. 基于體積平均技術的飽和土體多過程耦合現象理論研究[D]. 北京: 北京工業大學, 2017.

    XU Z G. The oretical study on multi-process coupling phenomena of saturated soil based on volume averaging technique[D]. Beijing: Beijing University of Technology, 2017.
    [76] TAKHAR P S. Unsaturated fluid transport in swelling poroviscoelastic biopolymers[J]. Chemical Engineering Science,2014,109:98?110. doi:  10.1016/j.ces.2014.01.016
    [77] TAKHAR P S. Hybrid mixture theory based moisture transport and stress development in corn kernels during drying: Coupled fluid transport and stress equations[J]. Journal of Food Engineering,2015,105(4):663?670.
    [78] TAKHAR P S, MAIER D E, CAMPANELLA O H, et al. Hybrid mixture theory based moisture transport and stress developmentin corn kernels during drying: Validation and simulation results[J]. Journal of Food Engineering,2011,106(4):275?282. doi:  10.1016/j.jfoodeng.2011.05.006
    [79] RYBAK I V, GRAY W G, MILLER C T. Modeling two-fluid-phase flow and species transport in porous media[J]. Journal of Hydrology,2015,521:565?581. doi:  10.1016/j.jhydrol.2014.11.051
    [80] ARUNACHALAM H, KORNEEV S, BATTIATO I, et al. Multiscale modeling approach to determine effective lithium-ion transport properties[C]//American Control Conference, IEEE, 2017.
    [81] EITELBERGER J, HOFSTETTER K. Prediction of transport properties of wood below the fiber saturation point-a multiscale homogenization approach and its experimental validation. Part II: Steady state moisture diffusion coefficient[J]. Composites Science & Technology,2011,71(2):145?151.
    [82] PIERRE G, YVES G. Flow in fractured media: A modified renormalization method[J]. Water Resources Research,1998,34(2):177?191. doi:  10.1029/97WR03042
  • 加載中
圖(2) / 表(2)
計量
  • 文章訪問數:  30
  • HTML全文瀏覽量:  3
  • PDF下載量:  6
  • 被引次數: 0
出版歷程
  • 收稿日期:  2021-11-26
  • 網絡出版日期:  2022-08-11
  • 刊出日期:  2022-08-11

目錄

    /

    返回文章
    返回

    重要通知

    專欄綠色通道:食品營養素包埋與遞送