• CA
  • JST
  • FSTA
  • SCOPUS
  • 北大核心期刊
  • 中國科技核心期刊CSTPCD
  • 中國精品科技期刊
  • RCCSE中國核心學術期刊
  • 中國農業核心期刊
  • 中國生物醫學文獻服務系統SinoMed收錄期刊
中國精品科技期刊2020

基于蛋白質組學分析尿嘧啶對出芽短梗霉產普魯蘭多糖的影響

陳世偉 唐淑賢 王舸楠 吳程遠 張淑慧 趙廷彬 殷海松 鄭志強 喬長晟

陳世偉,唐淑賢,王舸楠,等. 基于蛋白質組學分析尿嘧啶對出芽短梗霉產普魯蘭多糖的影響[J]. 食品工業科技,2022,43(16):18?25. doi:  10.13386/j.issn1002-0306.2021120231
引用本文: 陳世偉,唐淑賢,王舸楠,等. 基于蛋白質組學分析尿嘧啶對出芽短梗霉產普魯蘭多糖的影響[J]. 食品工業科技,2022,43(16):18?25. doi:  10.13386/j.issn1002-0306.2021120231
CHEN Shiwei, TANG Shuxian, WANG Genan, et al. Proteomics Analysis of the Effect of Uracil on Pullulan Polysaccharide Production by Aureobasidium pullulans[J]. Science and Technology of Food Industry, 2022, 43(16): 18?25. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2021120231
Citation: CHEN Shiwei, TANG Shuxian, WANG Genan, et al. Proteomics Analysis of the Effect of Uracil on Pullulan Polysaccharide Production by Aureobasidium pullulans[J]. Science and Technology of Food Industry, 2022, 43(16): 18?25. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2021120231

基于蛋白質組學分析尿嘧啶對出芽短梗霉產普魯蘭多糖的影響

doi: 10.13386/j.issn1002-0306.2021120231
基金項目: 天津市科委基金項目(21YDTPJC00140);工業發酵微生物教育部重點實驗室暨天津市工業微生物重點實驗室開放課題項目(2020KF006)。
詳細信息
    作者簡介:

    陳世偉(1997?),男,碩士,研究方向:代謝控制發酵,E-mail:chenlogin@yeah.net

    通訊作者:

    喬長晟(1969?),男,博士,教授,研究方向:代謝控制發酵,E-mail:qiaochangsheng@163.com

  • 中圖分類號: Q539+.1

Proteomics Analysis of the Effect of Uracil on Pullulan Polysaccharide Production by Aureobasidium pullulans

  • 摘要: 為了解尿嘧啶對出芽短梗霉生長及合成普魯蘭多糖的內在機制,研究了尿嘧啶在普魯蘭多糖發酵過程中的最適添加量與最適添加時間。利用非標記(Label-free)定量技術和液相色譜-串聯質譜技術比較出芽短梗霉發酵后期(88 h)的蛋白質組分,并對其差異蛋白質進行生物信息學分析。結果表明:在48 h添加0.5 g/L的尿嘧啶對普魯蘭多糖的產量提高最為顯著,在5 L發酵罐上驗證,產量由70.13 g/L提高到86.27 g/L,提高了23%。進行蛋白質組分分析鑒定出80個差異性蛋白質,其中包括40個上調蛋白和40個下調蛋白(差異倍數>2,P<0.05),對這些差異蛋白進行聚類分析、GO功能富集分析、KEGG通路分析顯示上述差異蛋白廣泛涉及細胞過程、代謝過程等重要生物過程。差異蛋白質主要參與糖酵解、果糖和甘露糖代謝、乙醛酸和二羧酸代謝、丙酮酸代謝和TCA循環等代謝過程,最終引起普魯蘭多糖產量的變化。為進一步了解出芽短梗霉產普魯蘭多糖的代謝機理提供了分子基礎。
  • 圖  1  不同濃度梯度尿嘧啶對普魯蘭發酵的影響

    Figure  1.  Effects of different concentration gradients of uracil on the fermentation of pululan

    圖  2  不同時間添加尿嘧啶對普魯蘭發酵的影響

    Figure  2.  Effects of uracil addition at different time on pullulan fermentation

    圖  3  尿嘧啶對普魯蘭多糖發酵的影響

    Figure  3.  Effects of uracil on the fermentation of pullulan polysaccharide

    圖  4  空白組和實驗組差異蛋白質聚類分析

    Figure  4.  Differential protein cluster analysis of blank and experimental groups

    圖  5  差異蛋白GO功能富集分析(Top 20)

    Figure  5.  GO functional enrichment analysis of differential proteins (Top 20)

    圖  6  差異蛋白KEGG通路注釋

    Figure  6.  Differential protein KEGG pathway annotations

    圖  7  尿嘧啶引起的差異蛋白對出芽短梗霉代謝途徑的影響

    Figure  7.  Effect of differential protein induced by uracil on metabolic pathway of Aureobasidium pullulans

    表  1  搜庫參數

    Table  1.   Parameters of searching

    ItemValue
    EnzymeTrypsin
    Max Missed Cleavages2
    Main search6 ppm
    First search20 ppm
    MS/MS Tolerance
    Fixed modifications
    20 ppm
    Carbamidomethyl (C)
    Variable modificationsOxidation (M), Acetyl
    (Protein N-term)
    Databaseuniprot- Aureobasidium pullulans.fasta
    Database patternReverse
    Include contaminantsTrue
    Peptide FDR≤0.01
    Protein FDR≤0.01
    Time window (match between runs)2 min
    Protein QuantificationUse razor and unique peptides
    iBAQTrue
    iBAQ min. ratio count1
    下載: 導出CSV

    表  2  差異蛋白結果統計

    Table  2.   Differential protein results statistics

    差異比較組所有差異表達蛋白質上調差異表達蛋白質下調差異表達蛋白質
    實驗組vs空白組804040
    下載: 導出CSV

    表  3  差異蛋白結果統計

    Table  3.   Differential proteins statistics

    蛋白質 ID蛋白質名稱表達量
    A0A1A7MIC4己糖激酶[EC:2.7.1.1]上升
    A0A1A7MQ326-磷酸果糖激酶-2 [EC:2.7.1.105 3.1.3.46]上升
    A0A1A7MHQ9異檸檬酸裂解酶[EC:4.1.3.1]上升
    A0A074Y8L1蘋果酸酶[EC:1.1.1.40]下降
    下載: 導出CSV
    人妻AV无码系列一区二区三区
  • [1] GIBBS P A, SEVIOUR R J. Pullulan, polysaccharides in medicinal applications[J]. Carbohydrate Polymers,1996:59?86.
    [2] LEATHERS T D. Polysaccharides Ⅱ: Polysaccharides from eukaryotes[M]. 2002, 6: 1-35.
    [3] PETROV P, SHINGEL K, SCRIPKO A, et al. The biosynthesis of pullulan by strain BMP-97 of Aureobasidium pullulans[J]. Biotekhnologiya,2002:36?48.
    [4] MERT H, ?ZKAHRAMAN B, DAMAR H. A novel wound dressing material: Pullulan grafted copolymer hydrogel via UV copolymerization and crosslinking[J]. Journal of Drug Delivery Science and Technology,2020,60:101962. doi:  10.1016/j.jddst.2020.101962
    [5] HAN K, LIU Y, LIU Y, et al. Characterization and film-forming mechanism of egg white/pullulan blend film[J]. Food Chem,2020,315:126201. doi:  10.1016/j.foodchem.2020.126201
    [6] KRA?NIEWSKA K, POBIEGA K, GNIEWOSZ M. Pullulan-biopolymer with potential for use as food packaging[J]. International Journal of Food Engineering, 2019, 15(9).
    [7] SINGH R S, KAUR N, HASSAN M, et al. Pullulan in biomedical research and development-a review[J]. Int J Biol Macromol,2021,166:694?706. doi:  10.1016/j.ijbiomac.2020.10.227
    [8] CARVER J D, WALKER W A. The role of nucleotides in human nutrition[J]. The Journal of Nutritional Biochemistry,1995,6(2):58?72. doi:  10.1016/0955-2863(94)00019-I
    [9] WEST T P. Pyrimidine base supplementation effects curdlan production in Agrobacterium sp. ATCC 31749[J]. J Basic Microbiol,2006,46(2):153?157. doi:  10.1002/jobm.200510067
    [10] LEE J S, WEE J W, LEE H Y, et al. Effects of ascorbic acid and uracil on exo-polysaccharide production with Hericium erinaceus in liquid culture[J]. Biotechnology and Bioprocess Engineering,2010,15(3):453?459. doi:  10.1007/s12257-008-0265-3
    [11] SALEH N E, ABDELKHALEK N, LASHEN S, et al. Dietary inosine and uracil efficacy on immune and growth genes expression, physiological performance and intestinal topography of juvenile sea bream (Sparus aurata)[J]. Aquaculture Research,2021,52(8):3935?3948. doi:  10.1111/are.15237
    [12] SHENG L, ZHU G, TONG Q. Effect of uracil on pullulan production by Aureobasidium pullulans CGMCC1234[J]. Carbohydr Polym,2014,101:435?437. doi:  10.1016/j.carbpol.2013.09.063
    [13] 張攀, 張伊凡, 成剛剛, 等. 基于代謝組學分析MgSO4·7H2O和K2HPO4協同對普魯蘭多糖生物合成的影響[J]. 食品科技,2021,46(4):1?8. [ZHANG P, ZHANG Y F, CHENG G G, et al. Analysis of the effect of MgSO4·7H2O and K2HPO4 on pullulan biosynthesis based on metabolomics[J]. Food Science,2021,46(4):1?8.

    ZHANG P, ZHANG Y F, CHENG G G, et al. Analysis of the effect of MgSO4·7H2O and K2HPO4 on pullulan biosynthesis based on metabolomics[J]. Food Science, 2021, 46(4): 1-8.
    [14] 談夢飛, 高謙, 王萌, 等. Tween-60對出芽短梗霉合成多糖代謝組學的分析[J]. 食品科技,2018,43(9):1?6. [TAN M F, GAO Q, WANG M, et al. Metabolomics analysis of Tween-60 on pullulan by Aureobsidium pullulans[J]. Food Science,2018,43(9):1?6.

    TAN M F, GAO Q, WANG M, et al. Metabolomics analysis of Tween-60 on pullulan by Aureobsidium pullulans[J]. Food Science, 2018, 43(9): 1-6.
    [15] JACEK R W, ALEXANDRE Z, NAGARJUNA N, et al. Universal sample preparation method for proteome analysis[J]. Nat Methods,2009,6(5):359?362. doi:  10.1038/nmeth.1322
    [16] ZHOU D, ZHANG Q, LI P, et al. Combined transcriptomics and proteomics analysis provides insight into metabolisms of sugars, organic acids and phenols in UV-C treated peaches during storage[J]. Plant Physiol Biochem,2020,157:148?159. doi:  10.1016/j.plaphy.2020.10.022
    [17] COX J, MANN M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification[J]. Nat Biotechnol,2008,26(12):1367?1372. doi:  10.1038/nbt.1511
    [18] WILLIAMS E G, WU Y, JHA P, et al. Systems proteomics of liver mitochondria function[J]. Science,2016,352(6291):aad0189. doi:  10.1126/science.aad0189
    [19] GUO H, WANG L, DENG Y, et al. Novel perspectives of environmental proteomics[J]. Sci Total Environ,2021,788:147588. doi:  10.1016/j.scitotenv.2021.147588
    [20] VAN S E. Hexokinase/glucokinase[J]. Encyclopedia of Biological Chemistry, 2013: 543−547.
    [21] WEI X, LIU G L, JIA S L, et al. Pullulan biosynthesis and its regulation in Aureobasidium spp[J]. Carbohydrate Polymers,2021:251.
    [22] RYAN D G, FREZZA C, O'NEILL L A. TCA cycle signalling and the evolution of eukaryotes[J]. Curr Opin Biotechnol,2021,68:72?88.
    [23] XUE J, LI T, CHEN T T, et al. Regulation of malate-pyruvate pathway unifies the adequate provision of metabolic carbon precursors and NADPH in Tetradesmus obliquus[J]. Algal Research,2021:57.
  • 加載中
圖(7) / 表(3)
計量
  • 文章訪問數:  14
  • HTML全文瀏覽量:  6
  • PDF下載量:  5
  • 被引次數: 0
出版歷程
  • 收稿日期:  2021-12-21
  • 網絡出版日期:  2022-08-11
  • 刊出日期:  2022-08-11

目錄

    /

    返回文章
    返回

    重要通知

    專欄綠色通道:食品營養素包埋與遞送