• CA
  • JST
  • FSTA
  • SCOPUS
  • 北大核心期刊
  • 中國科技核心期刊CSTPCD
  • 中國精品科技期刊
  • RCCSE中國核心學術期刊
  • 中國農業核心期刊
  • 中國生物醫學文獻服務系統SinoMed收錄期刊
中國精品科技期刊2020

雨生紅球藻蝦青素納米顆粒的制備及穩定性研究

袁巧月 吳梵 王孝治 趙軒 崔莉 羅海波 陶明煊 劉琛 郭宇星

袁巧月,吳梵,王孝治,等. 雨生紅球藻蝦青素納米顆粒的制備及穩定性研究[J]. 食品工業科技,2022,43(16):98?104. doi:  10.13386/j.issn1002-0306.2021120295
引用本文: 袁巧月,吳梵,王孝治,等. 雨生紅球藻蝦青素納米顆粒的制備及穩定性研究[J]. 食品工業科技,2022,43(16):98?104. doi:  10.13386/j.issn1002-0306.2021120295
YUAN Qiaoyue, WU Fan, WANG Xiaozhi, et al. Preparation and Stability of Nanoparticles Containing Astaxanthin from Haematococcus pluvialis[J]. Science and Technology of Food Industry, 2022, 43(16): 98?104. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2021120295
Citation: YUAN Qiaoyue, WU Fan, WANG Xiaozhi, et al. Preparation and Stability of Nanoparticles Containing Astaxanthin from Haematococcus pluvialis[J]. Science and Technology of Food Industry, 2022, 43(16): 98?104. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2021120295

雨生紅球藻蝦青素納米顆粒的制備及穩定性研究

doi: 10.13386/j.issn1002-0306.2021120295
基金項目: 江蘇省農業科技自主創新資金項目(CX(20)3050);國家自然科學基金面上項目(31972093)。
詳細信息
    作者簡介:

    袁巧月(1998?),女,碩士研究生,研究方向:功能性食品,E-mail:xzityqy@163.com

    通訊作者:

    劉?。?973?),女,碩士,實驗師,研究方向:功能性食品,E-mail:1456769560@qq.com

    郭宇星(1981?),女,博士,教授,研究方向:功能性食品,E-mail:45222@njnu.edu.cn

  • 中圖分類號: TS201.1

Preparation and Stability of Nanoparticles Containing Astaxanthin from Haematococcus pluvialis

  • 摘要: 為改善雨生紅球藻蝦青素的穩定性和水溶性,本文使用蝸牛酶進行雨生紅球藻蝦青素的破壁提取,并以阿拉伯膠和乳清蛋白粉(富含乳脂肪球膜)為壁材,利用復合凝聚法制備蝦青素納米顆粒,此外對納米顆粒的穩定性進行研究。結果表明:蝦青素納米顆粒的最佳制備條件為:pH4.0,乳清蛋白與阿拉伯膠質量比為2:1,蝦青素濃度為60 μmol/L,此工藝條件下蝦青素的包封率為92.93%±0.19%。該納米顆粒平均粒徑為265.71±0.55 nm,Zeta電位為?13.44±0.14 mV,并具備良好的貯藏穩定性,在4 ℃條件下貯藏15 d,粒徑增幅僅為6.1%,蝦青素保留率為90.78%±0.25%,DPPH清除率為79.31%±0.18%。本研究改善了雨生紅球藻蝦青素的穩定性和水溶性,為蝦青素的高效利用提供了技術支持。
  • 圖  1  蛋白、阿拉伯膠及復合體系的Zeta電位隨pH變化的情況

    Figure  1.  Variation of Zeta potential of proteins, gum arabic and composite systems with pH

    圖  2  不同pH對蝦青素包封率的影響

    Figure  2.  Effect of different pH values on the encapsulation rate of astaxanthin

    注:不同小寫字母表示各組樣品間存在顯著性差異(P<0.05)。

    圖  3  不同蛋白與阿拉伯膠質量比對蝦青素包封率的影響

    Figure  3.  Effect of protein to gum arabic mass ratios values on the encapsulation rate of astaxanthin

    圖  4  不同蝦青素濃度對蝦青素包封率的影響

    Figure  4.  Effect of different astaxanthin concentrations on the encapsulation rate of astaxanthin

    圖  5  蝦青素納米顆粒在水中的溶解

    Figure  5.  Dissolution of astaxanthin nanoparticles in water

    圖  6  蝦青素(a)、壁材(b)和蝦青素納米顆粒(c)的FTIR光譜圖

    Figure  6.  FTIR spectrum of astaxanthin (a), wall material (b) and astaxanthin nanoparticles (c)

    圖  7  蝦青素納米顆粒貯藏期間的粒徑(A)、Zeta電位(B)、蝦青素保留率(C)和DPPH自由基清除率(D)

    Figure  7.  Particle size (A), Zeta potential (B), astaxanthin retention (C) and DPPH free radical clearance (D) of astaxanthin nanoparticles during storage

    注:不同小寫字母表示同一溫度下不同貯藏天數樣品的顯著性差異(P<0.05);不同大寫字母表示同一貯藏天數下不同溫度樣品的顯著性差異(P<0.05)。

    人妻AV无码系列一区二区三区
  • [1] LIU Z W, ZENG X A, CHENG J H, et al. The efficiency and comparison of novel techniques for cell wall disruption in astaxanthin extraction from Haematococcus pluvialis[J]. International Journal of Food Science & Technology,2018,53(9):2212?2219.
    [2] YU C, LI X, HAN B, et al. Simultaneous improvement of astaxanthin and lipid production of Haematococcus pluvialis by using walnut shell extracts[J]. Algal Research,2021:54.
    [3] 陳祝. 低溫等離子體刺激雨生紅球藻生長及蝦青素積累機制的研究[D]. 合肥: 中國科學技術大學, 2020.

    CHEN Z. The stimulation of the growth and astaxanthin accumulation of Haematococcus pluvialis induced by low-temperature plasma[D]. Hefei: University of Science and Technology of China, 2020.
    [4] 高巖, 邢麗紅, 孫偉紅, 等. 不同來源蝦青素提取、純化及定量檢測方法的研究進展[J]. 食品安全質量檢測學報,2020,11(5):1414?1423. [GAO Y, XING L H, SUN W H, et al. Research progress on extraction, purification and quantitative detection methods of astaxanthin from different sources[J]. Journal of Food Safety and Quality,2020,11(5):1414?1423.

    GAO Y, XING L H, SUN W H, et al. Research progress on extraction, purification and quantitative detection methods of astaxanthin from different sources[J]. Journal of Food Safety and Quality, 2020, 11(05): 1414-1423.
    [5] CUI C, ZHANG Y, HAN H, et al. Improvement of FISH-FCM enumeration performance in filamentous yeast species in activated sludge by snailase partial digestion[J]. Yeast,2012,29(3?4):111?117. doi:  10.1002/yea.2894
    [6] YANG J, HUA S, HUANG Z, et al. Comparison of bioaccessibility of astaxanthin encapsulated in starch-based double emulsion with different structures[J]. Carbohydr Polym,2021,272:118475. doi:  10.1016/j.carbpol.2021.118475
    [7] PAN L, LI H, HOU L, et al. Gastrointestinal digestive fate of whey protein isolate coated liposomes loading astaxanthin: Lipolysis, release, and bioaccessibility[J]. Food Bioscience,2022:45.
    [8] ZHOU Q, YANG L, XU J, et al. Evaluation of the physicochemical stability and digestibility of microencapsulated esterified astaxanthins using in vitro and in vivo models[J]. Food Chem,2018,260:73?81. doi:  10.1016/j.foodchem.2018.03.046
    [9] CHEN Y, TIE S, ZHANG X, et al. Preparation and characterization of glycosylated protein nanoparticles for astaxanthin mitochondria targeting delivery[J]. Food Funct,2021,12(17):7718?7727. doi:  10.1039/D1FO01751A
    [10] GE S, JIA R, LI Q, et al. Pickering emulsion stabilized by zein/Adzuki bean seed coat polyphenol nanoparticles to enhance the stability and bioaccessibility of astaxanthin[J]. Journal of Functional Foods,2022:88.
    [11] LIU C Z, LIU Z, SUN X, et al. Fabrication and characterization of β-lactoglobulin-based nanocomplexes composed of chitosan oligosaccharides as vehicles for delivery of astaxanthin[J]. J Agric Food Chem,2018,66(26):6717?6726. doi:  10.1021/acs.jafc.8b00834
    [12] ZHANG X, ZHAO X, TIE S, et al. Ultrasonic self-emulsification nanocarriers for cellular enhanced astaxanthin delivery[J]. J Agric Food Chem,2021,69(9):2719?2728. doi:  10.1021/acs.jafc.0c05983
    [13] 姬曉曦. 乳源乳脂肪球膜蛋白組學分析及其對細胞凋亡的作用機制[D]. 哈爾濱: 哈爾濱工業大學, 2017.

    JI X X. The proteome analysis of MFGM original from different milk and the apoptosis mechanism of MFGM proteins on tumor cells [D]. Harbin: Harbin Institute of Technology, 2017.
    [14] 郭靜, 胡坦, 潘思軼. 食品運載體系包埋葉黃素的研究進展[J]. 食品科學,2022,43(1):313?320. [GUO J, HU T, PAN S Y. Research progress on food delivery systems for lutein encapsulation[J]. Food Science,2022,43(1):313?320. doi:  10.7506/spkx1002-6630-20210330-373

    GUO J, HU T, PAN S Y. Research progress on food delivery systems for lutein encapsulation[J]. Food Science, 2022, 43(1): 313-320. doi:  10.7506/spkx1002-6630-20210330-373
    [15] JAIN A, THAKUR D, GHOSHAL G, et al. Microencapsulation by complex coacervation using whey protein isolates and gum acacia: An approach to preserve the functionality and controlled release of β-carotene[J]. Food and Bioprocess Technology,2015,8(8):1635?1644. doi:  10.1007/s11947-015-1521-0
    [16] LI Q, HE S, XU W, et al. Formation, stability and in vitro digestion of β-carotene in oil-in-water milk fat globule membrane protein emulsions[J]. Food Biophysics,2018,13(2):198?207. doi:  10.1007/s11483-018-9525-8
    [17] HE S, YE A. Formation and gastrointestinal digestion of β-carotene emulsion stabilized by milk fat globule membrane[J]. Journal of Food Process Engineering, 2019, 42(8): e13301.
    [18] 張曄, 劉志偉, 譚興和. 響應面法優化復合酶提取雨生紅球藻中蝦青素的工藝[J]. 食品工業科技,2019,40(22):87?92. [ZHANG Y, LIU Z W, TAN X H. Optimization of multi-enzymatic extraction of astaxanthin from Haematococcus pluvialis by response surface methodology[J]. Science and Technology of Food Industry,2019,40(22):87?92.

    ZHANG Y, LIU Z W, TAN X H. Optimization of multi-enzymatic extraction of astaxanthin from Haematococcus pluvialis by response surface methodology[J]. Science and Technology of Food Industry, 2019, 40(22): 87-92.
    [19] DUAN Z, ZHU C, SHI J, et al. High efficiency production of ginsenoside compound K by catalyzing ginsenoside Rb1 using snailase[J]. Chinese Journal of Chemical Engineering,2018,26(7):1591?1597. doi:  10.1016/j.cjche.2018.02.004
    [20] WANG L, HU J, Lü W, et al. Optimized extraction of astaxanthin from shrimp shells treated by biological enzyme and its separation and purification using macroporous resin[J]. Food Chem,2021,363:130369. doi:  10.1016/j.foodchem.2021.130369
    [21] ZHAO X, ZHANG X, LIU H, et al. Enzyme-assisted extraction of astaxanthin from Haematococcus pluvialis and its stability and antioxidant activity[J]. Food Sci Biotechnol,2019,28(6):1637?1647. doi:  10.1007/s10068-019-00608-6
    [22] LIU Z W, ZHOU Y X, WANG L H, et al. Multi-spectroscopies and molecular docking insights into the interaction mechanism and antioxidant activity of astaxanthin and β-lactoglobulin nanodispersions[J]. Food Hydrocolloids,2021:117.
    [23] 鄒文潔. 卵白蛋白—藻酸丙二醇酯復合納米顆粒包載花青素及其顯色包裝薄膜的研究[D]. 武漢: 華中農業大學, 2020.

    ZOU W J. The investigation of ovalbumin-propylene glycol alginate complex nanoparticles on encapsulation of anthocyanin and its visable mebarance [D]. Wuhan: Huazhong Agricultural University, 2020.
    [24] CHEN X, ZHAO Y, ZHAO Y, et al. Effect of ultra-high pressure treatment on the characteristics of a tea polysaccharide conjugate aqueous solution[J]. Industrial Crops and Products,2021:171.
    [25] HUANG L, LI D, MA Y, et al. Dietary fatty acid-mediated protein encapsulation simultaneously improving the water-solubility, storage stability, and oral absorption of astaxanthin[J]. Food Hydrocolloids,2022:123.
    [26] 牛付閣. 卵白蛋白-阿拉伯膠相互作用及其在油水界面的吸附特性[D]. 無錫: 江南大學, 2015.

    NIU F G. Ovalbumin-gum arabic interactions and the adsorption properties at the oil-water interface[D]. Wuxi: Jiangnan University, 2015.
    [27] HU Y, KOU G, CHEN Q, et al. Protection and delivery of mandarin (Citrus reticulata Blanco) peel extracts by encapsulation of whey protein concentrate nanoparticles[J]. LWT,2019,99:24?33. doi:  10.1016/j.lwt.2018.09.044
    [28] ZHANG T, SU M, LIU M, et al. Optimization of encapsulation using milk polar lipid liposomes with S-Layer protein and transport study of the ACE-inhibitory peptide RLSFNP[J]. J Agric Food Chem, 2021.
    [29] BOONLAO N, SHRESTHA S, SADIQ M B, et al. Influence of whey protein-xanthan gum stabilized emulsion on stability and in vitro digestibility of encapsulated astaxanthin[J]. Journal of Food Engineering,2020:272.
    [30] 謝灝婷. 基于薏米醇溶蛋白的蝦青素納米顆粒的構建及其特性研究[D]. 長沙: 中南林業科技大學, 2021.

    XIE H T. The research on the construction and characteristics of astaxanthin complex nanoparticles based on coixin[D]. Changsha: Central South University of Forestry and Technology, 2021.
    [31] ZHAO X, ZHANG X, FU L, et al. Effect of extraction and drying methods on antioxidant activity of astaxanthin from Haematococcus pluvialis[J]. Food and Bioproducts Processing,2016,99:197?203. doi:  10.1016/j.fbp.2016.05.007
    [32] 周慶新, 楊魯, 陳芳甜, 等. 雨生紅球藻蝦青素酯微膠囊制備及其穩定特性研究[J]. 中國食品添加劑,2017(7):131?139. [ZHOU Q X, YANG L, CHEN F T, et al. Study on preparation and stability of microcapsule containing esterified astaxanthins from Haematococcus pluvialis[J]. China Food Additives,2017(7):131?139. doi:  10.3969/j.issn.1006-2513.2017.07.014

    ZHOU Q X, YANG L, CHEN F T, et al. Study on preparation and stability of microcapsule containing esterified astaxanthins from Haematococcus pluvialis[J]. China Food Additives, 2017(7): 131-139. doi:  10.3969/j.issn.1006-2513.2017.07.014
    [33] 暴莎莎. 基于復凝聚法和噴霧干燥法制備南極磷蝦油微膠囊的研究[D]. 大連: 大連工業大學, 2016.

    BAO S S. Preparation for the antarctic krill oil microcapsules based on complex coacervation and spray drying technique[D]. Dalian: Dalian Polytechnic University, 2016.
    [34] 胡方斌. PLGA載蝦青素納米粒的優化制備及其對HaCaT細胞光損傷保護作用的研究[D]. 廣州: 華南理工大學, 2019.

    HU F B. Study on optimization of PLGA nanoparticles loaded with astaxanthin and evaluation of anti-photodamage effect in vitro[D]. Guangzhou: South China University of Technology, 2019.
    [35] ZHAO Y, LIU J, GUAN L, et al. Fabrication of aqueous nanodispersion from natural DNA and chitosan as eminent carriers for water-insoluble bioactives[J]. Int J Biol Macromol, 2018, 118(Pt A): 263-270.
    [36] 樊永康. 載荷槲皮素的糖基化酪蛋白納米粒子的制備、表征及性能研究[D]. 杭州: 浙江大學, 2020.

    FAN Y K. Study on the preparation, characterization and properties of quercetin-loaded glycosylated casein nanoparticles[D]. Hangzhou: Zhejiang University, 2020.
    [37] HOU P, PU F, ZOU H, et al. Whey protein stabilized nanoemulsion: A potential delivery system for ginsenoside Rg3 whey protein stabilized nanoemulsion: Potential Rg3 delivery system[J]. Food Bioscience,2019:31.
  • 加載中
圖(7)
計量
  • 文章訪問數:  11
  • HTML全文瀏覽量:  6
  • PDF下載量:  4
  • 被引次數: 0
出版歷程
  • 收稿日期:  2021-12-28
  • 網絡出版日期:  2022-08-11
  • 刊出日期:  2022-08-11

目錄

    /

    返回文章
    返回

    重要通知

    專欄綠色通道:食品營養素包埋與遞送