• CA
  • JST
  • FSTA
  • SCOPUS
  • 北大核心期刊
  • 中國科技核心期刊CSTPCD
  • 中國精品科技期刊
  • RCCSE中國核心學術期刊
  • 中國農業核心期刊
  • 中國生物醫學文獻服務系統SinoMed收錄期刊
中國精品科技期刊2020

外源γ-氨基丁酸對鮮切南瓜品質和γ-氨基丁酸代謝的影響

梁靜宜 郭凡 趙科 王鴻飛 許鳳

梁靜宜,郭凡,趙科,等. 外源γ-氨基丁酸對鮮切南瓜品質和γ-氨基丁酸代謝的影響[J]. 食品工業科技,2022,43(19):385?392. doi:  10.13386/j.issn1002-0306.2022010017
引用本文: 梁靜宜,郭凡,趙科,等. 外源γ-氨基丁酸對鮮切南瓜品質和γ-氨基丁酸代謝的影響[J]. 食品工業科技,2022,43(19):385?392. doi:  10.13386/j.issn1002-0306.2022010017
LIANG Jingyi, GUO Fan, ZHAO Ke, et al. Effect of Exogenous γ-Aminobutyric Acid on the Quality and γ-Aminobutyric Acid Metabolism of Fresh-cut Pumpkins[J]. Science and Technology of Food Industry, 2022, 43(19): 385?392. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022010017
Citation: LIANG Jingyi, GUO Fan, ZHAO Ke, et al. Effect of Exogenous γ-Aminobutyric Acid on the Quality and γ-Aminobutyric Acid Metabolism of Fresh-cut Pumpkins[J]. Science and Technology of Food Industry, 2022, 43(19): 385?392. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2022010017

外源γ-氨基丁酸對鮮切南瓜品質和γ-氨基丁酸代謝的影響

doi: 10.13386/j.issn1002-0306.2022010017
基金項目: 寧波市公益項目(2022S138,2022S154);浙江省公益項目(LGN19C200012)。
詳細信息
    作者簡介:

    梁靜宜(1996?),女,碩士,研究方向:果蔬采后保鮮,E-mail:670827033@qq.com

    通訊作者:

    許鳳(1983?),女,博士,教授,研究方向:農產品貯藏加工,E-mail:xufeng1@nbu.edu.cn

  • 中圖分類號: TS255.1

Effect of Exogenous γ-Aminobutyric Acid on the Quality and γ-Aminobutyric Acid Metabolism of Fresh-cut Pumpkins

  • 摘要: 以貝貝南瓜為原料,研究了外源GABA (γ-Aminobutyric acid, GABA)和其合成抑制劑3-巰基丙酸(3-Mercaptopropionic acid,3-MP)處理對鮮切南瓜品質和GABA積累的影響以及可能的作用機制。結果表明,外源GABA可以誘導內源GABA的積累,并促進南瓜中谷氨酸在谷氨酸脫羧酶(Glutamate decarboxylase,GAD)催化下轉換成GABA。3-MP處理后的南瓜,GABA含量低于對照組,且GAD和GABA轉氨酶(GABA transaminase,GABA-T)活性受到抑制。在多胺降解途徑中,GABA處理組的多胺含量(腐胺、精胺、亞精胺)顯著低于對照組,而3-MP處理抑制了多胺氧化酶(Polyamine oxidase,PAO)、二胺氧化酶(Diamine oxidase,DAO)和4-氨基丁醛脫氫酶(Aminoaldehyde decarboxylase,AMADH)的活性。說明GABA處理可以激活多胺降解途徑,促進GABA在南瓜體內富集。同時在貯藏期間,外源GABA處理對南瓜最大菌落總數、色澤、β-胡蘿卜素含量和可溶性固形物含量等均影響不大。
  • 圖  1  外源GABA和3-MP處理對鮮切南瓜中菌落總數、白度、可溶性固形物和β-胡蘿卜素含量的影響

    Figure  1.  Effect of exogenous GABA and 3-MP treatments on the total number of colonies, whiteness, soluble solids and β-carotene content in fresh-cut pumpkins

    注:不同小寫字母表示同一時間不同處理組差異顯著(P<0.05);圖2~圖6同。

    圖  2  外源GABA和3-MP處理對鮮切南瓜中谷氨酸和GABA含量的影響

    Figure  2.  Effect of exogenous GABA and 3-MP treatments on glutamate and GABA contents in fresh-cut pumpkins

    圖  3  外源GABA和3-MP處理對鮮切南瓜GAD和GABA-T活性的影響

    Figure  3.  Effect of exogenous GABA and 3-MP treatments on GAD and GABA-T activities in fresh-cut pumpkins

    圖  4  外源GABA和3-MP處理對鮮切南瓜中多胺含量的影響

    Figure  4.  Effect of exogenous GABA and 3-MP treatments on the content of polyamines in fresh-cut pumpkins

    圖  5  外源GABA和3-MP處理對鮮切南瓜中DAO、PAO和AMADH活性的影響

    Figure  5.  Effects of exogenous GABA and 3-MP treatments on the activities of DAO, PAO and AMADH in fresh-cut pumpkins

    圖  6  外源GABA和3-MP處理對鮮切南瓜中CmGAD基因表達的影響

    Figure  6.  Effect of exogenous GABA and 3-MP treatments on CmGAD gene expression in fresh-cut pumpkins

    人妻AV无码系列一区二区三区
  • [1] 王凱凱, 孫朦, 宋佳敏, 等. γ-氨基丁酸(GABA)形成機理及富集方法的研究進展[J]. 食品工業科技,2018,39(14):323?329. [WANG K K, SUN M, SONG J M, et al. Research progress on the mechanism of γ-aminobutyric acid (GABA) formation and enrichment methods[J]. Food Industry Science and Technology,2018,39(14):323?329.

    WANG K K, SUN M, SONG J M, et al. Research progress on the mechanism of γ-aminobutyric acid (GABA) formation and enrichment methods[J]. Food Industry Science and Technology, 2018, 39(14): 323-329.
    [2] PIET R, KALIL B, MCLENNAN T, et al. Dominant neuropeptide cotransmission in kisspeptin-GABA regulation of GnRH neuron firing driving ovulation[J]. J Neurosci,2018,38(28):6310?6322. doi:  10.1523/JNEUROSCI.0658-18.2018
    [3] YANG R, GUO Y, WANG S, et al. Ca2+ and aminoguanidine on γ-aminobutyric acid accumulation in germinating soybean under hypoxia–NaCl stress[J]. Journal of Food and Drug Analysis,2015,23(2):287?293. doi:  10.1016/j.jfda.2014.07.004
    [4] STEWARD F C, THOMPSON J F, DENT C E. γ-Aminobutyric acid: A constituent of the potato tuber?[J]. Science,1949,110:439?440.
    [5] KHAN M, JALIL S U, CHOPRA P, et al. Role of GABA in plant growth, development and senescence[J]. Plant Gene,2021(4):100283.
    [6] 余光輝, 涂奕霏, 李承龍, 等. 植物GABA信號途徑研究[J]. 中南民族大學學報:自然科學版,2021,40(5):427?477. [YU G H, TU Y F, LI C L, et al. Study on GABA signaling pathway in plants[J]. Journal of Central South University for Nationalities (Natural Science Edition),2021,40(5):427?477.

    YU G H, TU Y F, LI C L, et al. Study on GABA signaling pathway in plants[J]. Journal of Central South University for Nationalities (Natural Science Edition), 2021, 40(5): 6.
    [7] 朱云輝, 郭元新, 杜傳來, 等. 低氧聯合NaCl脅迫下外源Ca2+對發芽苦蕎γ-氨基丁酸富集的影響[J]. 中國糧油學報,2017,32(1):17?23. [ZHU Y H, GUO Y X, DU C L, et al. Effect of exogenous Ca2+ on γ-aminobutyric acid enrichment in germinating buckwheat under hypoxia combined with NaCl stress[J]. Chinese Journal of Cereals and Oils,2017,32(1):17?23. doi:  10.3969/j.issn.1003-0174.2017.01.002

    ZHU Y H, GUO Y X, DU C L, et al. Effect of exogenous Ca2+ on γ-aminobutyric acid enrichment in germinating buckwheat under hypoxia combined with NaCl stress[J]. Chinese Journal of Cereals and Oils, 2017, 32(1): 7. doi:  10.3969/j.issn.1003-0174.2017.01.002
    [8] 白青云, 曾波, 顧振新. 低氧通氣對發芽粟谷中γ-氨基丁酸含量的影響[J]. 食品科學,2010(9):49?53. [BAI Q Y, ZENG B, GU Z X. Effect of hypoxic aeration on the content of γ-aminobutyric acid in germinated corn grains[J]. Food Science,2010(9):49?53.

    BAI Q Y, ZENG B, GU Z X. Effect of hypoxic aeration on the content of γ-aminobutyric acid in germinated corn grains[J]. Food Science, 2010(9): 5.
    [9] 侯瑩, 祁雪鶴, 任慧, 等. 鮮切處理對獼猴桃中γ-氨基丁酸富集的影響[J]. 食品工業科技,2020,41(20):58?63,84. [HOU Y, QI X H, REN H, et al. Effect of fresh-cutting treatment on the enrichment of γ-aminobutyric acid in kiwifruit[J]. Food Industry Science and Technology,2020,41(20):58?63,84.

    HOU Y, QI X H, REN H, et al. Effect of fresh-cutting treatment on the enrichment of γ-aminobutyric acid in kiwifruit[J]. Food Industry Science and Technology, 2020, 41(20): 7.
    [10] WANG K K, XU F, CAO S F, et al. Effects of exogenous calcium chloride (CaCl2) and ascorbic acid (AsA) on the γ-aminobutyric acid (GABA) metabolism in shredded carrots[J]. Postharvest Biology and Technology,2019,152:111?117. doi:  10.1016/j.postharvbio.2019.03.005
    [11] HOU Y, REN H, WANG K K, et al. Influence of fresh-cut process on γ-aminobutyric acid (GABA) metabolism and sensory properties in carrot[J]. Journal of Food Science and Technology,2021(9):1?10.
    [12] MALEKZADEH P, KHARA J, HEYDARI R. Alleviating effects of exogenous Gamma-aminobutiric acid on tomato seedling under chilling stress[J]. Physiology and Molecular Biology of Plants,2014,20(1):133?137. doi:  10.1007/s12298-013-0203-5
    [13] LIU B, LI Y, ZHANG X, et al. Exogenous GABA prevents Marssonina apple blotch damage in ‘Royal Gala’ apple seedlings[J]. Scientia Horticulturae,2022,299:111005. doi:  10.1016/j.scienta.2022.111005
    [14] 馬瑋, 史玉滋, 段穎, 等. 南瓜果實淀粉和可溶性固形物研究進展[J]. 中國瓜菜,2018,31(11):1?5. [MA W, SHI Y Z, DUAN Y, et al. Research progress on starch and soluble solids in pumpkin fruits[J]. Chinese Squash,2018,31(11):1?5. doi:  10.3969/j.issn.1673-2871.2018.11.001

    MA W, SHI Y Z, DUAN Y, et al. Research progress on starch and soluble solids in pumpkin fruits[J]. Chinese Squash, 2018, 31(11): 5. doi:  10.3969/j.issn.1673-2871.2018.11.001
    [15] LIANG J Y, GUO F, CAO S F, et al. γ-Aminobutyric acid (GABA) alleviated oxidative damage and programmed cell death in fresh-cut pumpkins[J]. Plant Physiology and Biochemistry,2022,180:9?16. doi:  10.1016/j.plaphy.2022.03.029
    [16] 郭丹, 韓英群, 郝義. 不同品種蘋果冷藏期間品質與生理變化[J]. 食品科學,2016,37(22):289?294. [GUO D, HAN Y Q, HAO Y. Quality and physiological changes of different varieties of apples during refrigeration[J]. Food Science,2016,37(22):289?294. doi:  10.7506/spkx1002-6630-201622044

    GUO D, HAN Y Q, HAO Y. Quality and physiological changes of different varieties of apples during refrigeration[J]. Food Science, 2016, 37(22): 289-294 doi:  10.7506/spkx1002-6630-201622044
    [17] AL-QURAAN N A, LOCY R D, SINGH N K. Implications of paraquat and hydrogen peroxide-induced oxidative stress treatments on the GABA shunt pathway in Arabidopsis thaliana calmodulin mutants[J]. Plant Biotechnology Reports,2011,5(3):225?234. doi:  10.1007/s11816-011-0174-3
    [18] HU X, XU Z, XU W, et al. Application of γ-aminobutyric acid demonstrates a protective role of polyamine and GABA metabolism in muskmelon seedlings under Ca(NO3)2 stress[J]. Plant Physiology and Biochemistry,2015,92:1?10. doi:  10.1016/j.plaphy.2015.04.006
    [19] BARTYZEL I, PELCZAR K, PASZKOWSKI A. Functioning of the γ-aminobutyrate pathway in wheat seedlings affected by osmotic stress[J]. Biologia Plantarum,2003,47(2):221?225.
    [20] DEEWATTHANAWONG R, ROWELL P, WATKINS C B. γ-Aminobutyric acid (GABA) metabolism in CO2 treated tomatoes[J]. Postharvest Biology and Technology,2010,57(2):97?105. doi:  10.1016/j.postharvbio.2010.03.007
    [21] 宋春波, 方怡楠, 吳哲銘, 等. γ-氨基丁酸對低溫脅迫下桃果實多胺代謝的影響[J]. 果樹學報,2016,33(5):552?562. [SONG C B, FANG Y N, WU Z M, et al. Effect of γ-aminobutyric acid on polyamine metabolism in peach fruit under low temperature stress[J]. Journal of Fruit Trees,2016,33(5):552?562.

    SONG C B, FANG Y N, WU Z M, et al. Effect of γ-aminobutyric acid on polyamine metabolism in peach fruit under low temperature stress[J]. Journal of Fruit Trees, 2016, 33(5): 552-562.
    [22] GAO H, JIA Y, GUO S, et al. Exogenous calcium affects nitrogen metabolism in root-zone hypoxia-stressed muskmelon roots and enhances short-term hypoxia tolerance[J]. Journal of Plant Physiology,2011,168(11):1217?1225. doi:  10.1016/j.jplph.2011.01.022
    [23] ?EBELA M, BRAUNER F, RADOVá A, et al. Characterisation of a homogeneous plant aminoaldehyde dehydrogenase[J]. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology,2000,1480(1?2):329?341. doi:  10.1016/S0167-4838(00)00086-8
    [24] WANG M, LI J, FAN L. Quality changes in fresh-cut asparagus with ultrasonic-assisted washing combined with cinnamon essential oil fumigation[J]. Postharvest Biology and Technology,2022,187:111873. doi:  10.1016/j.postharvbio.2022.111873
    [25] ZHA Z, TANG R, WANG C, et al. Riboflavin inhibits browning of fresh-cut apples by repressing phenolic metabolism and enhancing antioxidant system[J]. Postharvest Biology and Technology,2022,187:111867. doi:  10.1016/j.postharvbio.2022.111867
    [26] GIORDANO L, BOITEUX L, QUEZADODUVAL A, et al. 'BRS Tospodoro': A high lycopene processing tomato cultivar adapted to organic cropping systems and with multiple resistance to pathogens[J]. Horticultura Brasileira,2010,28(2):241?245.
    [27] PALMA F, CARVAJAL F, JIMéNEZ-MU?OZ R, et al. Exogenous γ-aminobutyric acid treatment improves the cold tolerance of zucchini fruit during postharvest storage[J]. Plant Physiology and Biochemistry,2019,136:188?195. doi:  10.1016/j.plaphy.2019.01.023
    [28] LI Y, LIU B, PENG Y, et al. Exogenous GABA alleviates alkaline stress in Malus hupehensis by regulating the accumulation of organic acids[J]. Scientia Horticulturae,2020,261:108982. doi:  10.1016/j.scienta.2019.108982
    [29] JI J, SHI Z, XIE T, et al. Responses of GABA shunt coupled with carbon and nitrogen metabolism in poplar under NaCl and CdCl2 stresses[J]. Ecotoxicology and Environmental Safety,2020,193:110322. doi:  10.1016/j.ecoenv.2020.110322
    [30] LEE J H, KIM Y J, JEONG D Y, et al. Isolation and characterization of a Glutamate decarboxylase (GAD) gene and their differential expression in response to abiotic stresses from Panax ginseng C. A. Meyer[J]. Molecular Biology Reports,2010,37(7):3455?3463. doi:  10.1007/s11033-009-9937-0
    [31] DA? Z A, DIMLIO?LU G, BOR M, et al. Zinc induced activation of GABA-shunt in tobacco (Nicotiana tabaccum L.)[J]. Environmental and Experimental Botany,2016,122:78?84. doi:  10.1016/j.envexpbot.2015.09.006
    [32] LI C, ZHU J, SUN L, et al. Exogenous γ-aminobutyric acid maintains fruit quality of apples through regulation of ethylene anabolism and polyamine metabolism[J]. Plant Physiology and Biochemistry,2021,169:92?101. doi:  10.1016/j.plaphy.2021.11.008
    [33] TU J, LIU G, JIN Y, et al. Enrichment of γ-aminobutyric acid in mulberry leaves and the inhibitory effects of the water extract on ACE and α-glucosidase activity[J]. Industrial Crops and Products,2022,177:114485. doi:  10.1016/j.indcrop.2021.114485
    [34] KUMAR N, GAUTAM A, DUBEY A K, et al. GABA mediated reduction of arsenite toxicity in rice seedling through modulation of fatty acids, stress responsive amino acids and polyamines biosynthesis[J]. Ecotoxicology and Environmental Safety,2019,173:15?27. doi:  10.1016/j.ecoenv.2019.02.017
    [35] YIN Y, YANG R, GUO Q, et al. NaCl stress and supplemental CaCl2 regulating GABA metabolism pathways in germinating soybean[J]. European Food Research and Technology,2014,238(5):781?788. doi:  10.1007/s00217-014-2156-5
    [36] GUO Y, YANG R, CHEN H, et al. Accumulation of γ-aminobutyric acid in germinated soybean (Glycine max L.) in relation to glutamate decarboxylase and diamine oxidase activity induced by additives under hypoxia[J]. European Food Research and Technology,2012,234(4):679?687. doi:  10.1007/s00217-012-1678-y
    [37] XING S, JUN Y, HUA Z, et al. Higher accumulation of gamma-aminobutyric acid induced by salt stress through stimulating the activity of diarnine oxidases in Glycine max L. Merr. roots[J]. Plant Physiol Biochem,2007,45(8):560?566. doi:  10.1016/j.plaphy.2007.05.007
    [38] XIE K, WU C, CHI Z, et al. Enhancement of γ-aminobutyric acid (GABA) and other health-promoting metabolites in germinated broccoli by mannose treatment[J]. Scientia Horticulturae,2021,276:109706. doi:  10.1016/j.scienta.2020.109706
    [39] 陳煒, 成鐵龍, 紀敬, 等. 楊樹GABA支路3個基因家族的鑒定和表達分析[J]. 南京林業大學學報(自然科學版),2020,44(5):67?77. [CHEN W, CHENG T L, JI J, et al. Identification and expression analysis of three gene families in the GABA branch of Populus tremula[J]. Journal of Nanjing Forestry University (Natural Science Edition),2020,44(5):67?77.

    CHEN W, CHENG T L, JI J, et al. Identification and expression analysis of three gene families in the GABA branch of Populus tremula[J]. Journal of Nanjing Forestry University (Natural Science Edition), 2020, 44(5): 67-77.
  • 加載中
圖(6)
計量
  • 文章訪問數:  27
  • HTML全文瀏覽量:  16
  • PDF下載量:  9
  • 被引次數: 0
出版歷程
  • 收稿日期:  2022-01-05
  • 網絡出版日期:  2022-08-18
  • 刊出日期:  2022-09-23

目錄

    /

    返回文章
    返回

    重要通知

    專欄綠色通道:食品營養素包埋與遞送